We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


How Does RNA Impact Fear-Related Learning and Memory?

Single stranded RNA.
Credit: iStock.
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Researchers from UQ’s Queensland Brain Institute have discovered a new way ribonucleic acid (RNA) impacts fear-related learning and memory.

Professor Timothy Bredy said this is an exciting example of RNA’s role in fine-tuning the cellular functions in the brain.

In a paper published in Nature Communications, researchers demonstrated that a noncoding RNA known as Gas5 coordinates the trafficking and clustering of RNA molecules inside the long processes of neurons, and orchestrating neuronal excitability in real time that contributes to learning and memory.

“Understanding the complex world of RNA is a rapidly emerging area of neuroscience research, where we are constantly learning more about how different classes of RNA control the communication between and within brain cells,” Professor Bredy said.

Want more breaking news? Subscribe for FREE to get the latest science stories delivered straight to your inbox. Don't let the discoveries pass you by!

“In this study, we found learning-related RNAs at the synapse and one, in particular, called Gas5 seems to be uniquely required for fear extinction memory.

“There’s a lot more happening with these kinds of RNA molecules than we first thought and that fact they influence cellular function on a millisecond timeframe, which mirrors the real time changes in synaptic function that happen in the brain during learning, is extraordinary.

Non-coding RNA may be the missing link to understanding how the brain processes critically important inputs that lead to the formation of memory”

This study builds on earlier findings this year from the Bredy Lab which identified a separate population of learning-related RNAs that accumulate near the synapse – the junction between neurons that allow them to communicate.

In that paper, published in the Journal of Neuroscience, they uncovered several new synapse-specific RNA that harbour a specific chemical tag called N6-methyladenosine (m6A).

Lead author Dr Sachithrani Madugalle said the findings highlighted the importance of m6A-modified RNAs in regulating synaptic plasticity.

“Readers are proteins that bind to the chemical tag and direct it to locations and functions,” Dr Madugalle said.

“The readers allowed us to determine the functional role of m6A-modified RNA molecules in the formation of new memories.

“By examining one such RNA, Malat1, we discovered the key proteins that interact with this RNA and support processes related to an important type of memory called fear extinction.

“Fear extinction impairment is associated with post-traumatic stress disorder (PTSD).

“When Malat1 is chemically decorated with m6A, this allows it to interact with different proteins in the synaptic compartment, which can then alter the mechanisms involved in the formation of fear extinction memory.

“This new information may inform the development of future RNA therapies to address PTSD.

“By understanding where, when, and how an RNA molecule is activated and having a precise marker will help us identify the target for therapies.”

In addition, in both studies the team employed an innovative new tool that allowed them to manipulate the functional state of an RNA molecule, together with Professor Bryan Dickinson and Dr. Simone Rauch at the University of Chicago.

“We are now looking for ways to harness RNA to control the aspects of synaptic function underlying memory formation and to potentially develop an RNA therapeutic for the treatment of PTSD and phobia,” Professor Bredy said.

Reference: Madugalle SU, Liau WS, Zhao Q, et al. Synapse-enriched M 6 a-modified MALAT1 interacts with the novel M 6 a reader, DPYSL2, and is required for fear-extinction memory. J Neurosci. 2023;43(43):7084-7100. doi: 10.1523/JNEUROSCI.0943-23.2023

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.