We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
How Memory Blurs Our Perception of the World
News

How Memory Blurs Our Perception of the World

How Memory Blurs Our Perception of the World
News

How Memory Blurs Our Perception of the World

Credit: Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "How Memory Blurs Our Perception of the World"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

We learned it as children: to cross the street in exemplary fashion, we must first look to the left, then to the right, and finally once more to the left. If we see a car and a cyclist approaching when we first look to the left, this information is stored in our short-term memory. During the second glance to the left, our short-term memory reports: bicycle and car were there before, they are the same ones, they are still far enough away. We cross the street safely.

This is, however, not at all true. Our short-term memory deceives us. When looking to the left the second time, our eyes see something completely different: the bicycle and the car do not have the same color anymore because they are just now passing through the shadow of a tree, they are no longer in the same location, and the car is perhaps moving more slowly. The fact that we nonetheless immediately recognize the bicycle and the car is due to the fact that the memory of the first leftward look biases the second one.

Scientists at Goethe University, led by psychologist Christoph Bledowski and doctoral student Cora Fischer reconstructed the traffic situation – very abstractly – in the laboratory: student participants were told to remember the motion direction of green or red dots moving across a monitor. During each trial, the test person saw two moving dot fields in short succession and had to subsequently report the motion direction of one of these dot fields. In additional tests, both dot fields were shown simultaneously next to each other. The test persons all completed numerous successive trials.

The Frankfurt scientists were very interested in the mistakes made by the test persons and how these mistakes were systematically connected in successive trials. If for example the observed dots moved in the direction of 10 degrees and in the following trial in the direction of 20 degrees, most people reported 16 to 18 degrees for the second trial. However, if 0 degrees were correct for the following trial, they reported 2 to 4 degrees for the second trial. The direction of the previous trial therefore distorted the perception of the following one – “not very much, but systematically,” says Christoph Bledowski. He and his team extended previous studies by investigating the influence of contextual information of the dot fields like color, spatial position (right or left) and sequence (shown first or second). “In this way we more closely approximate real situations, in which we acquire different types of visual information from objects,” Bledowski explains. This contextual information, especially space and sequence, contribute significantly to the distortion of successive perception in short-term memory. First author Cora Fischer says: “The contextual information helps us to differentiate among different objects and consequently to integrate information of the same object through time.”

What does this mean for our traffic situation? “Initially, it doesn’t sound good if our short-term memory reflects something different from what we physically see,” says Bledowski. “But if our short-term memory were unable to do this, we would see a completely new traffic situation when we looked to the left a second time. That would be quite confusing, because a different car and a different cyclist would have suddenly appeared out of nowhere. The slight ‘blurring’ of our perception by memory ultimately leads us to perceive our environment, whose appearance is constantly changing due to motion and light changes, as stable. In this process, the current perception of the car, for example, is only affected by the previous perception of the car, but not by the perception of the cyclist.”

Reference

Fischer et al. (2020) Context information supports serial dependence of multiple visual objects across memory episodes. Nature Communications. DOI: https://doi.org/10.1038/s41467-020-15874-w

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement