Lissencephaly in a Dish
News Sep 19, 2017 | Original Story from the Karolinska Institute

iPS-derived neural stem cells in green and neurons in red from a healthy individual (to the left) and a person with lissencephaly (to the right). The sample from the healthy person gives rise to fewer immature cells (neural stem cells). Credit: Karolinska Institute
By reprogramming skin cells into nerve cells, researchers at Karolinska Institutet are creating cell models of the human brain. In a new study published in Molecular Psychiatry the researchers describe how cells from patients with the severe developmental disease lissencephaly differ from healthy cells. The method can provide vital new knowledge on difficult-to-study congenital diseases.
Lissencephaly is a rare congenital developmental disease that can be caused by, amongst other anomalies, a mutation of the DCX gene. Affected individuals are born with serious developmental disabilities and a brain that is smooth instead of folded.
Uses award-winning technique
The discovery that it is possible to reprogramme specialised cells such as skin cells in order to reverse their development back to stem cells was rewarded with the 2012 Nobel Prize. The resulting so-called iPS-cells (induced pluripotent stem cells) can then be turned into other specialised cell types.
Anna Falk, docent at Karolinska Institutet’s Department of Neuroscience, uses this technique to build cell models of the human brain. In the present study, her team took skin cells from patients with lissencephaly and turned them into iPS cells, which they then cultivated under special conditions into neuronal stem cells and neurons that are copies of those in the patients’ brains.
By examining the cell cultivation dishes, the researchers were able to observe how the patients’ cells behaved and developed from stem cells to nerve cells and compare them with cells from healthy controls. They found that the diseased cells matured much more slowly, sent out shorter projections and were much less mobile.
“It’s already known that DCX affects the ability of neurons to migrate, but we can now show that DCX plays a much greater, broader part in brain development than that,” says Dr Falk. “Our hypothesis is that it’s this, the damaged nerve cells’ resistance to maturation that causes the disease.”
No relevant animal models
Since there are no relevant animal models for lissencephaly, the reprogramming technique has been essential to the study of lissencephaly’s underlying pathogenesis. At Dr Falk’s laboratory, the method is used to also study other congenital diseases that affect the brain, such as autism and Down syndrome. In future projects, the researchers hope to study how diseased cells can be modified to act as healthy cells.
“What many developmental diseases have in common seems to be the failure of brain cells to mature at the same rate as they do in healthy people,” says Dr Falk. “Trying to influence the cells so that they behave like healthy cells is the first step towards some kind of therapy for these diseases.”
This article has been republished from materials provided by The Karolinska Institute. Note: material may have been edited for length and content. For further information, please contact the cited source.
RELATED ARTICLES
Neural Computer Hears Like Humans
NewsModelling the human senses is an incredibly complex task. Our brains arrange cells into complex hierarchies that process information from our surroundings. Now, a group at MIT have created a model of the human auditory cortex that can hear sounds and music in the same way that humans do.
READ MORENew Microscope Captures Detailed 3-D Movies of Cells Deep Within Living Systems
NewsMerging lattice light sheet microscopy with adaptive optics reveals the most detailed picture yet of subcellular dynamics in multicellular organisms.
READ MOREStable Beta-Amyloid Dimers Identified in Alzheimer’s Brains
NewsA recent study exploited state-of-the-art mass spectrometry to provide the first direct evidence of beta-amyloid dimers in patients with Alzheimer’s disease and points to the potential of these molecules as biomarkers. Beta-amyloid dimers may be the smallest pathological species that trigger Alzheimer’s disease.
Comments | 0 ADD COMMENT
Like what you just read? You can find similar content on the communities below.
Biopharma Cell Science Neuroscience Immunology & MicrobiologyTo personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free
LOGIN SUBSCRIBE FOR FREE
Login
You must be logged in to post a comment.