We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
NASA study shows that space travel affects spine of astronauts
News

NASA study shows that space travel affects spine of astronauts

NASA study shows that space travel affects spine of astronauts
News

NASA study shows that space travel affects spine of astronauts

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "NASA study shows that space travel affects spine of astronauts "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

How does space travel affect the spine? Astronauts on long missions in space have atrophy of the muscles supporting the spine—which don't return to normal even several weeks after their return to Earth, reports a study published in Spine.


The results provide new insights into the elevated rates of back pain and spinal disc disease associated with prolonged spaceflight, report Dr. Douglas G. Chang of University of California, San Diego, and colleagues. "This could provide helpful physiological information to support a manned mission to Mars," the researchers write. The data were obtained as part of a NASA-funded research study, led by Drs. Alan R. Hargens and Jeffrey C. Lotz.


See Also: Spinal surgery: Right on target


Six NASA crewmembers were studied before and after spending four to seven months in "microgravity" conditions on the International Space Station. Each astronaut underwent magnetic resonance imaging (MRI) scans of the spine before their mission, immediately after their return to Earth, and again one to two months later.


The goal was to understand factors affecting lumbar spine strength and low back pain during long-duration spaceflight, as well as the spine's response after returning to Earth gravity. Back pain is common during prolonged missions, with more than half of crew members reporting spinal pain. Astronauts are also at increased risk of spinal disc herniation in the months after returning from spaceflight—about four times higher than in matched controls.


These changes are accompanied by an increase in body height (about two inches), thought to result from spinal "unloading" and other changes related to the lack of gravity. The researchers used an image "thresh-holding" technique to estimate lean muscle separated from non-lean muscle components.


The MRI scans indicated significant atrophy of the paraspinal lean muscle mass—which plays a critical role in spinal support and movement—during the astronauts' time in space. The lean muscle, or "functional," cross-sectional area of the lumbar paraspinal muscles decreased by an average of 19 percent from preflight to immediate postflight scans. A month or two later, only about two-thirds of the reduction had recovered.


Learn More: Survey shows spine surgeons need to screen more patients for anxiety and depression


There was an even more dramatic reduction in the functional cross-sectional area of the paraspinal muscles relative to total paraspinal cross-sectional area. The ratio of lean muscle decreased from 86 percent preflight to 72 percent immediately postflight. At follow-up, the ratio recovered to 81 percent, but was still less than the preflight value.


In contrast, there was no consistent change in the height of the spinal intervertebral discs. Dr. Chang and coauthors write, "These measurements run counter to previous hypotheses about the effects of microgravity on disc swelling." Further studies will be needed to clarify the effects on disc height, and whether they contribute to the increase in body height during space missions, and to the increased risk of herniated disc disease.


Meanwhile, the finding of paraspinal muscle atrophy suggests possible preventive steps to reduce the spinal effects of spaceflight. For instance, core-strengthening exercises, like those recommended for patients with back pain on Earth, might be a useful addition to the astronaut exercise training program.


Yoga might be another promising approach, especially for addressing spinal stiffness and reduced mobility. Dr. Chang and his colleagues conclude: "Whether new exercise countermeasures can prevent in-flight paraspinal muscle atrophy, improve spinal pain and function, shorten recovery time, and how such exercise might be performed in a microgravity environment with available exercise equipment need further study."


Read Next: Do spinal cord injuries cause subsequent brain damage?


Dr. Chang commented, "Above all this science, what I find is the most unique aspect about space research is the inspiration, curiosity and excitement generated in nearly everyone I talk to in terms of overcoming personal challenges, questioning our place in the Universe, and addressing change here at home."


Note: Material may have been edited for length and content. For further information, please contact the cited source.


Wolters Kluwer Health


Publication

Chang DG et al. Lumbar Spine Paraspinal Muscle and Intervertebral Disc Height Changes in Astronauts after Long-duration Spaceflight on the International Space Station.   Spine, Published 2016. doi: 10.1097/BRS.0000000000001873


Advertisement