We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
New imaging technique may give physicians a clearer picture of stroke damage
News

New imaging technique may give physicians a clearer picture of stroke damage

New imaging technique may give physicians a clearer picture of stroke damage
News

New imaging technique may give physicians a clearer picture of stroke damage

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "New imaging technique may give physicians a clearer picture of stroke damage"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Real-time imaging of neurological damage could lead to improved stroke care -


According to the American Heart Association, ischemic strokes account for nearly 90 percent of all strokes. They occur when a blocked artery prevents blood from getting to the brain and usually result in long-term disability or death. Now, a team of researchers led by the University of Missouri (MU) School of Medicine has developed a new, real-time method of imaging molecular events after strokes?a finding that may lead to improved care for patients.


See Also: Main component of brain repair after stroke identified


"During an ischemic stroke, harmful enzymes called gelatinase become overactive in areas of the brain where blood flow is cut off, said Zezong Gu, PhD, an associate professor of pathology and anatomical sciences at the MU School of Medicine and lead author of the study. "Over-activation of these enzymes causes brain damage. Our team hypothesized that if we could visualize and track this activity in real-time, we could then work on developing a way to block the activity and prevent brain damage from occurring."


Magnetic resonance imaging (MRI) is commonly used to diagnose strokes because it produces precise, sectional images of the brain. Although these images can verify the region of arterial blockages within the brain, current contrast agents are not specific or sensitive enough to reveal important molecular events, such as gelatinase activity, on an MRI image.


To overcome this obstacle, the researchers used peptides that specifically recognize gelatinase activity. The peptides were tagged with contrast agents through a process developed by research team member Roger Tsien, PhD, a biochemist and Nobel Laureate at the University of California, San Diego.


Learn More: A prescription for better stroke care


"Once the tagged peptides traveled to the site of increased gelatinase activity, they were absorbed into the cells with this activated enzyme," Gu said. "When enough of these peptides were absorbed, the stroke site was visible on an MRI. We tested this technique in both cell-based and mouse models of ischemic stroke. Using this method, we successfully tracked gelatinase activity."


Gu suggests that real-time imaging of this activity could lead to a better understanding of how to treat strokes and mediate the damage they cause.


"Our findings indicate that tagged peptides can be used as a non-invasive probe to detect and track gelatinase activity," Gu said. "This process may serve as an additional tool for clinicians to treat their patients if a viable inhibitor can be developed to prevent the damage caused by this activity."


Gu and his team currently are working to develop such a gelatinase inhibitor.


Note: Material may have been edited for length and content. For further information, please contact the cited source.

University of Missouri Health   press release


Publication

Chen S et al. Gelatinase activity imaged by activatable cell-penetrating peptides in cell-based and in vivo models of stroke.  Journal of Cerebral Blood Flow and Metabolism, Published Online December 17 2015. doi: 10.1177/0271678X15621573


Advertisement