We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Newly discovered infectious prion structure shines light on mad cow disease
News

Newly discovered infectious prion structure shines light on mad cow disease

Newly discovered infectious prion structure shines light on mad cow disease
News

Newly discovered infectious prion structure shines light on mad cow disease

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Newly discovered infectious prion structure shines light on mad cow disease "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Breakthrough electron cryomicroscopy technology used in prion research -


Groundbreaking research from the University of Alberta has identified the structure of the infectious prion protein, the cause of "mad cow disease" or bovine spongiform encephalopathy (BSE), chronic wasting disease in deer and elk and Creutzfeldt-Jakob disease in humans, which has long remained a mystery.


See Also: New test detects toxic prions in blood


The infectious prion protein is a misfolded protein, which makes it very difficult to purify and study. Since it clumps together, standard structural biology techniques cannot be used to study it. Since the protein was first purified in the 1980s researchers have made limited insights into the structure of the protein.


The collaborative study, published in PLoS Pathogens, used electron cryomicroscopy to collect high-resolution electron micrographs. This was the first time this technology has been used on amyloid fibrils of the infectious prion, which are a special form of clumped-together proteins that form fibrils.


"The recent advances to electron cryomicroscopy technology are certainly a breakthrough," says Holger Wille, co-principal investigator and an associate professor in the Department of Biochemistry at the University of Alberta's Faculty of Medicine & Dentistry. "We know the structure of the healthy normal cellular form of the protein, but we knew very little about the infectious prion protein and how it propagates. The use of these high-powered microscopes has finally given us some clarity."


The team had to develop a processing scheme for the data masses. There were thousands of electron micrographs, and they had to extract the best images. After three years of working, developing techniques and processing data the results in the paper are a three-dimensional model for the structure of the infectious prion protein.


"It is not an atomistic model, so we cannot say which position the atoms are in," says Wille. "But this is something we hope to do in the future."


The model can give insights into how the infectious prion protein propagates. The structure argues against existing theories of prion conversion and suggests how the process might actually work. The study suggests how infectious prions replicate by converting non-infectious, cellular versions into copies of themselves.


Read Next: Solving the next step in the mystery of prions


Moving forward, the researchers want to go into more depth. This study used model system prions, but they are now using the prions that infect cows (BSE), wild animals (chronic wasting disease) and humans (Creutzfeldt-Jakob disease).


"Ultimately, if we know how the prion propagates, we could come up with clinical interventions to treat or prevent disease," says Wille.


Note: Material may have been edited for length and content. For further information, please contact the cited source.


University of Alberta Faculty of Medicine & Dentistry   Original reporting by: Shelby Soke


Publication

Vázquez-Fernández E et al. The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy.   PLoS Pathogens, Published September 8 2016. doi: 10.1371/journal.ppat.1005835


Advertisement