We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
No NELL2, No Sperm Motility
News

No NELL2, No Sperm Motility

No NELL2, No Sperm Motility
News

No NELL2, No Sperm Motility

Credit: Pixabay.
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "No NELL2, No Sperm Motility"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Newly produced spermatozoa within the testis are not fully functional until they mature in the epididymis, a duct that helps to transport and store sperm. Male infertility may arise from lack of communication between the testis and the epididymis and new research has uncovered a mechanism of this communication.

Dr. Martin Matzuk at Baylor College of Medicine, Dr. Masahito Ikawa with Osaka University and their colleagues have discovered a novel testicular luminal protein, NELL2, that triggers in the epididymis a chain of events that matures the sperm and enables each one to be motile in females.

Sperm production


Sperm are produced in the seminiferous tubules of the testis and move through the epididymis, a long, convoluted tube linked to the vas deferens, the duct that moves sperm from the testicle to the urethra. When the sperm enter the epididymis, they are not motile and are incapable of fertilization. However, in their passage through the epididymis, the sperm are provided an appropriate environment for maturation and storage pending ejaculation.

It has been hypothesized that proteins released by the testis earlier in this process could act on the epididymis to mature the sperm as they arrive in the epididymis.

“Until now the proteins working through the lumicrine system of signaling have remained elusive. While it was known that the orphan receptor tyrosine kinase ROS1 expressed in the initial segment of the epididymis is necessary for its differentiation, neither the testicular factors that regulate initial segment differentiation nor the process of sperm maturation had been fully understood,” said Matzuk, professor and director of the Center for Drug Discovery at Baylor.

Identifying NELL2


The researchers zeroed in on NELL2, a protein factor secreted by testicular germ cells, as a possible lumicrine regulator of fertility.


“Using innovative genome editing technology, we generated knockout mice lacking the NELL2 gene and showed that these knockout males are sterile due to a defect in sperm motility,” explains lead author Dr. Daiji Kiyozum. “Moreover, their infertility could be rescued with a germ-cell-specific transgene, thus excluding other sites of expression. We also illustrated lumicrine signaling by demonstrating tagged NELL2 in the epididymal lumen.”

The research team observed that spermatogenesis proceeds normally in NELL2 knockout mouse testes but their epididymis was poorly differentiated, similar to Ros1 knockout mice. Following mating, neither NELL2 knockout nor Ros1 knockout spermatozoa can enter the uterine tubes or fertilize an egg. Further investigation showed that the Nell2 knockout epididymis is incapable of processing a specific sperm surface protein essential for male fertility.

Implications for male fertility?


Elaborating on their study, Ikawa and Matzuk, both senior authors, said, “We discovered a complicated cascade of events in which disruption of any point in this lumicrine pathway causes a male to be infertile."

Reference: Kiyozumi et al. (2020). NELL2-mediated lumicrine signaling through OVCH2 is required for male fertility. Science. DOI: 10.1126/science.aay5134.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
Advertisement