We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Optimal Precursor Ion Selection for LC-MALDI MS/MS
News

Optimal Precursor Ion Selection for LC-MALDI MS/MS

Optimal Precursor Ion Selection for LC-MALDI MS/MS
News

Optimal Precursor Ion Selection for LC-MALDI MS/MS

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Optimal Precursor Ion Selection for LC-MALDI MS/MS"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Background:
Liquid chromatography mass spectrometry (LC-MS) maps in shotgun proteomics are often too complex to select every detected peptide signal for fragmentation by tandem mass spectrometry (MS/MS).Standard methods for precursor ion selection, commonly based on data dependent acquisition, select highly abundant peptide signals in each spectrum. However, these approaches produce redundant information and are biased towards high-abundance proteins.

Results:
We present two algorithms for inclusion list creation that formulate precursor ion selection as an optimization problem. Given an LC-MS map, the first approach maximizes the number of selected precursors given constraints such as a limited number of acquisitions per RT fraction. Second, we introduce a protein sequence-based inclusion list that can be used to monitor proteins of interest. Given only the protein sequences, we create an inclusion list that optimally covers the whole protein set. Additionally, we propose an iterative precursor ion selection that aims at reducing the redundancy obtained with data dependent LC-MS/MS. We overcome the risk of erroneous assignments by including methods for retention time and proteotypicity predictions. We show that our method identifies a set of proteins requiring fewer precursors than standard approaches. Thus, it is well suited for precursor ion selection in experiments with limited sample amount or analysis time.

Conclusions:
We present three approaches to precursor ion selection with LC-MALDI MS/MS. Using a well defined protein standard and a complex human cell lysate, we demonstrate that our methods out perform standard approaches. Our algorithms are implemented as part of OpenMS and are available under www.openms.de.

The article is published online in the journal BMC Bioinformatics and is free to access.

Advertisement