We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Promising results shown for a device designed to protect athletes from sports-related brain injuries
News

Promising results shown for a device designed to protect athletes from sports-related brain injuries

Promising results shown for a device designed to protect athletes from sports-related brain injuries
News

Promising results shown for a device designed to protect athletes from sports-related brain injuries

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Promising results shown for a device designed to protect athletes from sports-related brain injuries "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Experimental neck collar inspired by woodpeckers and bighorn sheep -


Two new studies involving high school football and hockey players indicate wearing a specifically designed compression collar around the neck may prevent or reduce the devastating effects of head collisions in sports. The neck device, called a Q-Collar, is designed to press gently on the jugular vein to slow blood outflow increasing the brain's blood volume. The resulting effect of the increased blood volume helps the brain fit tighter within the skull cavity, reducing the energy absorbed by the brain during collisions.


The analysis of neurophysiological and neuroanatomical data from the brain showed athletes in the non-collar wearing group had significant functional and structural changes to white matter regions of the brain but these changes were not evident in those who did wear the Q-Collar during play.


See Also: Color-changing polymer may signal traumatic brain injuries in athletes, soldiers


"White matter of the brain essentially connects all the pathways including structure and function. Neuro-radiologists at Cincinnati Children's Hospital established a protocol for how the white matter in the brain is impacted after head collisions and what correlates to a brain injury," said Greg Myer, PhD, director of sports medicine research at Cincinnati Children's Hospital Medical Center. Dr. Myer is the lead author of both studies published recently.


In the preliminary study published in Frontiers in Neurology | Neurotrauma, 15 hockey players from St. Xavier High School took part. Half wore the collar for the hockey season and the other half did not. Each of the helmets for the athletes was outfitted with an accelerometer to measure every head impact. Results from the imaging and electrophysiological testing indicated that athletes in the non-collar wearing group had a disruption of microstructure and functional performance of the brain. Athletes wearing the collar did not show a significant difference despite similar head impacts.


In a follow-up study published in the British Journal of Sports Medicine, 42 football players from two Greater Cincinnati high schools participated. Twenty-one athletes from St. Xavier High School wore the collar during a competitive season. They were tested before play to make sure the lightweight, c-shaped neck collar fit properly. The other half of athletes participating in the study were from Moeller High School. Those 21 players did not wear the collar.


Learn More: High school football helmets offer similar protections despite different prices


All of the athletes' helmets were outfitted with an accelerometer which tracked every hit sustained during the pre-and post-season. Researchers used advanced magnetic resonance imaging (MRI) techniques, including diffusion tensor imaging (DTI), to determine the efficacy of the collar to prevent structural changes to the brain following a season of head impacts. The results of this larger study showed similar protective effects of collar wear during the football season.


"The results of the studies demonstrate a potential approach to protecting the brain from changes sustained within a competitive football and hockey season, as evidenced by brain imaging," said Dr. Myer. "We still have more data analysis and investigation to do, but this device could be a real game-changer in helping athletes."


This study follows previously published work by Dr. Myer regarding "brain slosh" and theories on how altitude influences concussions in football. Many football-related concussions are believed to occur because the brain doesn't fit tightly in the skull. Cerebral blood flow rises at higher altitudes, causing the brain to fit tighter inside the skull, thus reducing the risk of a concussion. Historical approaches to protect the brain from outside the skull such as helmets have not been effective in reducing internal injury to the brain.


David Smith, PhD, co-author in the studies, researched bighorn (head-ramming) sheep and woodpeckers because both animals routinely tolerate high-speed cranium collisions with no adverse impact. A head-on collision between two rams can be 10 times greater than that of two football players; a woodpecker's impact against a tree is 20 times greater.


Related: US may be greatly undercounting pediatric concussions


The migration patterns of head-ramming sheep show they are hitting at high altitudes. With woodpeckers, they have a long tongue that wraps around the top of their head lassoing the jugular vein, which increases blood volume creating a natural bubble wrap to keep the brain from sloshing.


Q30 Innovations designed the neck collar and provided funding for the research. Performance Sports Group has licensed the technology from Q30 for use in sports worldwide and applied for FDA approval to market the device.


Note: Material may have been edited for length and content. For further information, please contact the cited source.


Cincinnati Children's Hospital Medical Center


Publications

Myer GD et al. The Effects of External Jugular Compression Applied during Head Impact Exposure on Longitudinal Changes in Brain Neuroanatomical and Neurophysiological Biomarkers: A Preliminary Investigation.   Frontiers in Neurology | Neurotrauma, Published June 6 2016. doi: 10.3389/fneur.2016.00074


Myer GD et al. Analysis of head impact exposure and brain microstructure response in a season-long application of a jugular vein compression collar: a prospective, neuroimaging investigation in American football.   British Journal of Sports Medicine, Published Online June 15 2016. doi: 10.1136/bjsports-2016-096134


Advertisement