We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Protective molecule sidelined in models of ALS
News

Protective molecule sidelined in models of ALS

Protective molecule sidelined in models of ALS
News

Protective molecule sidelined in models of ALS

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Protective molecule sidelined in models of ALS "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Researchers at the Virginia Tech Carilion Research Institute have identified a naturally occurring molecule that has the potential for preserving sites of communication between nerves and muscles in amyotrophic lateral sclerosis (ALS) and over the course of aging—as well as a molecule that interferes with this helpful process.


The discovery in mice has implications for patients with ALS, also known as Lou Gehrig's disease.


See Also: New gene variants present in 3 percent of all ALS patients


Published in The Journal of Neuroscience, the research team, led by Gregorio Valdez, an assistant professor at the Virginia Tech Carilion Research Institute and in the Department of Biological Sciences at Virginia Tech, describes a growth factor called FGFBP1, which is secreted by muscle fibers and maintains neuromuscular junctions—a critical type of synapse that allows the spinal cord to communicate with muscles, sending signals from the central nervous system to create movements.


ALS strikes approximately 6,000 people in the U.S. each year, according to the ALS Association.


In mouse models of ALS, a growth factor associated with the immune system, called TGF-beta, emerges and prevents muscles from secreting factors needed to maintain their connections with neurons.


Learn More: ALS: Renewing brain's aging support cells may help neurons survive


"TGF-beta is upregulated in ALS and in turn blocks expression of FGFBP1, which is released by muscle fibers to preserve the integrity of the neuromuscular junction," Valdez said. "The body is trying to help itself by generating more TGF-beta. Unfortunately, TGF-beta accumulates at the synapse where it blocks expression of FGFBP1, accelerating degeneration of the neuromuscular junction."


Gregorio Valdez (right), an assistant professor at the Virginia Tech Research Institute, and Thomas Taetzsch, a postdoctoral fellow, have identified a naturally occurring molecule that has the potential for preserving sites of communication between nerves and muscles in ALS and over the course of aging. Credit: Virginia Tech Carilion Research Institute
 


FGFBP1 also gradually decreases during aging, but more precipitously in ALS, because of TGF-beta accumulates at the synapse, according to Thomas Taetzsch, a postdoctoral fellow in the Valdez lab and a co-first author of the study.


Milagros Tenga, a postdoctoral fellow in the Valdez lab also contributed to this discovery and is also a co-first author in the paper.


In people, ALS progresses rapidly, attacking nerve cells that control voluntary muscles. Eventually, all muscles under voluntary control are affected, and individuals lose their strength and the ability to move their arms, legs, and body, according to the National Institute of Neurological Disorders and Stroke.


Read Next: Researchers develop unique model for studying ALS


Most people with ALS die from respiratory failure, usually within three to five years from the onset of symptoms.


"Our findings suggest that targeting these molecules may allow these important synapses to stay in place, and slow the progression of ALS," Valdez said.


Note: Material may have been edited for length and content. For further information, please contact the cited source.


Virginia Tech  


Publication

Taetzsch T, Tenga MJ, Valdez G. Muscle fibers secrete FGFBP1 to slow degeneration of neuromuscular synapses during aging and progression of ALS.   Journal of Neuroscience, Published November 14 2016. doi: 10.1523/JNEUROSCI.2992-16.2016


Advertisement