Protein Successfully Transported Through a Nanopore
A new technology where a protein passes through a nanopore could be the key to easy protein sequencing.
Complete the form below to unlock access to ALL audio articles.
There has been a real race among scientists to create a technology that enables easy protein sequencing. Professor of Chemical Biology Giovanni Maglia of the University of Groningen has now found the missing piece in the puzzle: a way to transport a protein through a nanopore, which allows sequencing of proteins in a simple, handheld device.
DNA sequencing has been a revolution in how we understand life, and sequencing proteins is the next holy grail. Maglia explains: ‘DNA is mostly static. The processes in our cells are executed by proteins: they do the actual work. And by understanding proteins, we will understand even more about how our bodies work.’
The problem of pulling proteins through a hole
There are currently handheld devices on the market that can sequence DNA. These devices use nanopore technology: a single strand of DNA is pulled through a tiny hole (a nanopore) in a membrane, and as they pass through, the sequence of building blocks in the DNA strand can be ‘read’.
There have been steps towards applying the same nanopore technology to proteins, but it was not yet possible to transport a long protein through the tiny hole in the same way as a DNA strand. ‘It’s like cooked spaghetti,’ Maglia explains. ‘These long strands want to be disorganized, they do not want to be pushed through this tiny hole.’
Single-stranded DNA is also a bit like cooked spaghetti, but it can be pulled through with an electric field because DNA itself is electrically charged. But proteins have a weaker charge, and can carry either positive or negative charge. ‘Proteins and DNA are different,’ Maglia explains, ‘so the technology needs to be adapted.’
Going with the flow
To transport a protein through a nanopore, Maglia used a solution of electrically charged particles (ions), which can be pulled through the nanopore with an electric field. When this happens, they drag along the protein. It was not at all trivial to make this work, Maglia explains: ‘we didn’t know whether the flow would be strong enough. Furthermore, these ions want to move both ways, but by attaching a lot of charge on the nanopore itself, we were able to make it directional.’
Want more breaking news?
Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.
Subscribe for FREE‘This proves that there is no fundamental limitation to sequencing proteins anymore,’ Maglia says. With his new startup called Portal Biotech, Maglia intends to make the nanopore technology from his lab available to users, such as labs and doctors. ‘With this latest research result, we have the missing piece that we needed to make protein sequencing happen.’
Why would we want to sequence proteins?
DNA is like a blue print for our bodies, but proteins are like the workers that do the actual construction. Based on DNA (the instructions), a range of proteins are formed, that execute various functions throughout our bodies. Just to name a few, proteins are responsible for:
- Taking up and releasing oxygen in our blood (hemoglobin)
- Defense against pathogens (antibodies)
- Transmitting signals, for instance through the nervous system, but also through a cell wall (receptors)
Proteins can also be harmful. Some examples are venom from snakes or spiders, or some pathogens (such as viruses).
We know a lot about the human genome (our DNA). By also studying the proteins in our bodies, scientists hope to gain more insight into how cells operate and what can make them malfunction. Ultimately, this can contribute to new, better treatments against diseases.
Reference: Sauciuc A, Morozzo della Rocca B, Tadema MJ, Chinappi M, Maglia G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat Biotechnol. 2023. doi: 10.1038/s41587-023-01954-x
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.