We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Researchers Uncover Proteins Linking Brain Connectivity and Function

Neurons.
Credit: iStock.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 3 minutes

Summary 

A study reveals hundreds of proteins that explain differences in brain connectivity, linking molecular data with neuroimaging in aging individuals. This research enhances understanding of cognitive function and could inform future interventions for brain health.

Key Takeaways

  • The study connects proteins to individual differences in brain connectivity.
  • Dendritic spine morphology was critical for integrating data at multiple scales.
  • Findings enhance understanding of the mechanistic basis of human cognition and behavior.

  • A long-standing goal of neuroscience is to understand how molecules and cellular structures on a microscale give rise to communication between brain regions at the macroscale. A study published in Nature Neuroscience now identifies, for the first time, hundreds of brain proteins that explain inter-individual differences in functional connectivity and structural covariation in the human brain.


    “A central goal of neuroscience is to develop an understanding of the brain that ultimately describes the mechanistic basis of human cognition and behavior,” said Jeremy Herskowitz, Ph.D., associate professor in the University of Alabama at Birmingham Department of Neurology and co-corresponding author of the study with Chris Gaiteri, Ph.D., SUNY Upstate Medical University, Syracuse, New York. “This study demonstrates the feasibility of integrating data from vastly different biophysical scales to provide a molecular understanding of human brain connectivity.”


    Bridging the gap from the molecular scale of proteins and mRNA to the brain-wide neuroimaging scale of functional and structural magnetic resonance imaging — a span of about seven orders of magnitude — was made possible by the Religious Orders Study and Rush Memory and Aging Project, or ROSMAP, at Rush University, Chicago, Illinois.

    Want more breaking news?

    Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

    Subscribe for FREE

    ROSMAP enrolls Catholic nuns, priests and brothers age 65 or older, who are without known dementia at time of enrollment. Participants receive medical and psychological evaluations each year and agree to donate their brains after death.


    Herskowitz, Gaiteri and colleagues studied postmortem brain samples and data from a unique cohort of 98 ROSMAP participants. Their data types included resting state fMRI, structural MRI, genetics, dendritic spine morphometry, proteomics and gene expression measurements from the superior frontal gyrus and inferior temporal gyrus of the brain.


    “Based on the stability of functional connectivity patterns within individuals, we hypothesized that it is possible to combine postmortem molecular and subcellular data with antemortem neuroimaging data from the same individuals to prioritize molecular mechanisms underlying brain connectivity,” Herskowitz said.


    The average age of the ROSMAP participants at time of MRI scan and at death were 88 +/- 6 years and 91 +/- 6 years, respectively, with an average time interval between the MRI scan and age at death of 3 +/- 2 years. The average postmortem interval to brain sampling was 8.5 +/- 4.6 hours. In the study, the researchers performed detailed characterization of each omic, cellular and neuroimaging data type, then integrated the different data types using computational clustering algorithms.


    A dendrite is a branched extension from a neuron body that receives impulses from other neurons. Each dendrite can have thousands of small protrusions called spines. The head of each spine can form a contact point called a synapse to receive an impulse sent from the axon of another neuron. Dendritic spines can rapidly change shape or volume while forming new synapses, part of the process called brain plasticity, and the head of the spine structurally supports postsynaptic density. Spines can be divided into shape subclasses based on their three-dimensional structure as thin, mushroom, stubby or filopodia. This summer, in a different study, Herskowitz and colleagues used ROSMAP samples to show that preservation of memory in the very old was maintained by the quality, as measured by dendritic spine head diameter, not the quantity of synapses in the brain.


    In this latest study, the hundreds of proteins the researchers identified that explain inter-individual differences in functional connectivity and structural covariation were enriched for proteins involved in synapses, energy metabolism and RNA processing. “By integrating data at the genetic, molecular, subcellular and tissue levels, we linked specific biochemical changes at synapses to connectivity between brain regions,” Herskowitz said.


    “Overall, this study indicates that acquiring data across the major perspectives in human neuroscience from the same set of brains is foundational for understanding how human brain function is supported at multiple biophysical scales,” Herskowitz said. “While future research is necessary for fully determining the scope and components of multi-scale brain synchrony, we have established a robustly defined initial set of molecules whose effects likely resonate across biophysical scales.”


    Reference: Ng B, Tasaki S, Greathouse KM, et al. Integration across biophysical scales identifies molecular and cellular correlates of person-to-person variability in human brain connectivity. Nat Neurosci. 2024. doi: 10.1038/s41593-024-01788-z


    This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.


    This content includes text that has been generated with the assistance of AI. Technology Networks' AI policy can be found here.