We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

“Starving” Cancer Cells Switch Their Metabolism To Feed on Proteins

“Starving” Cancer Cells Switch Their Metabolism To Feed on Proteins content piece image
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Amino acids are the building blocks of proteins and key nutrients for cell growth and proliferation. Understanding how cells utilise amino acids in different environments is a central question in basic biology and cancer research. Tumor tissues often have a limited blood supply, and to grow under such conditions, cancer cells switch their metabolic activities.


In particular, they switch from taking up nutrients delivered by blood vessels to exploiting alternative nutrients, such as breaking down surrounding proteins as a food source when facing starvation. However, the mechanisms that enable cancer cells to make this switch have remained largely elusive.


To better understand the molecular pathways that underly this nutrient switch in cancer, two groups of scientists with matching expertise teamed up: Wilhelm Palm of the German Cancer Research Center (DKFZ) in Heidelberg is a leading expert in cancer metabolism, Johannes Zuber at the Research Institute of Molecular Pathology (IMP) in Vienna brought in ample experience in functional cancer genetics. The scientists set up their study with tightly controlled nutrient conditions to mimic amino acid starvation as it occurs in many tumors. Then they used the "gene scissors" CRISPR-Cas9 to disrupt the expression of almost every gene in the genome, which allowed them to pin down several pathways involved in the nutrient switch.


Among them, the scientists spotted an uncharacterised gene that was only required for cell survival when cancer cells were feeding on extracellular proteins. This gene, which the scientists re-named "LYSET" (Lysosomal Enzyme Trafficking Factor), turned out to be critical for the function of lysosomes, small organelles that function as the stomach of cells where proteins are digested. Further experiments into the function of LYSET revealed that the gene acts as a core component of the so-called mannose-6-phosphate pathway, which is required for filling lysosomes with digestive enzymes. In the absence of LYSET, cancer cells lack enzymes in their lysosomes and are no longer able to digest proteins.


Then the scientists turned to mouse models to study the function of LYSET in real tumors. They found that the loss of LYSET strongly impaired tumor development in several types of cancer, while it was well-tolerated under normal nutrient conditions.


Wilhelm Palm, whose lab was among the first who described the ability of cancer cells to feed on extracellular proteins, says: "With LYSET, we have discovered a central component of a metabolic pathway that enables adaptations to different nutrients, a key ability of cancer cells to survive and grow in austere Tumor environments."


"This is what made the discovery so exciting," says Johannes Zuber. "LYSET and the mannose-6-phosphate pathway turn out to be particularly important for cancer cells and could therefore be a molecular entry point for attacking a major metabolic bottleneck in cancer."


Reference: Pechincha C, Groessl S, Kalis R, et al. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins. Science. 0(0):eabn5637. doi: 10.1126/science.abn5637.


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.