We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
The Neural Mechanisms Behind Slacklining
News

The Neural Mechanisms Behind Slacklining

The Neural Mechanisms Behind Slacklining
News

The Neural Mechanisms Behind Slacklining

Credit: Marcelo Moreira/ Pexels
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "The Neural Mechanisms Behind Slacklining"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

The human body constantly adapts its posture in response to its external environment. Known as “whole-body dynamic balance,” this is necessary for everything ranging from daily activities to more complex sports activities. Problems with whole-body dynamic balance can result in stumbles or falls. Naturally, the involvement of the whole body makes the neural networks behind this kind of postural control incredibly complex. Understanding the underlying neural mechanisms could prove valuable to sports training and rehabilitation following traumatic brain injuries such as stroke.

However, the study of these neural networks is challenging and information on this front has been limited. In a new study published in Medicine & Science in Sports & Exercise, researchers from Ritsumeikan University, Japan, have developed a new method for the investigation of whole-body dynamic balance mechanisms. “Our study opens the door to studying the neural mechanisms of motor learning ‘in situ’ during activities like gymnastics and swimming without constraints,” says Associate Professor Kenji Ueta, who led the study.

Repeated movements, such as motor learning exercises, alter the structural and functional connectivity between different regions in the brain. This is called “motor engram” or motor memory trace. The research team studied a group of 28 people to develop a motor engram of functional connectivity for slackline exercises. They took MRI images of the participants’ brains before and after 30-min of slackline training and repeated the sequence with ergometer-based aerobic exercise. Using this as a control, they evaluated the changes to the brain brought about specifically by whole-body dynamic balance training.

They found that slackline training significantly increased the “resting-state functional connectivity” (rs-FC) between several parts of the brain, including the prefrontal cortex, parts of the sensorimotor cortex, the hippocampus, and the cingulate cortex—brain regions associated with cognitive functions, motor tasks, memory, and mood, respectively. This suggested that whole-body dynamic balance training positively affects brain function as well.

More significantly, however, they observed that these changes were associated with offline learning, i.e., they were retained in the brain for a short period after the exercise. “The discovery that changes in rs-FC in the brain are correlated with the offline process of balance learning implies that certain constraints that we previously held true – such as the idea that a participant’s head needs to be fixed in place for us to evaluate their memory engrams effectively – are not necessary. This means that the neural mechanisms of motor learning can be studied during natural tasks using robotic devices,” explains Ueta.

What are the implications of these findings? While Ueta stresses that the study focused only on healthy young adults and more research would be required to see how whole-body dynamic balance training would affect other population groups, the results have potential applications in sports neuroscience and neurorehabilitation, enabling the development of more effective assessments and training programs.

“They can be used to create efficient training regimens for athletes or to develop treatment protocols that can help people rehabilitate and recover their motor functions more quickly,” speculates Ueta. “A few years from now, we may even have tailor-made neuroscience-based training methods for sports and exercise, which will increase their enjoyability. Making exercise more fun will go a long way towards decreasing lifestyle disease,” he concludes.

Reference: Ueta K, Mizuguchi N, Sugiyama T, Isaka T, Otomo S. The motor engram of functional connectivity generated by acute whole-body dynamic balance training. Med Sci Sports Exerc. 2021. doi: 10.1249/MSS.0000000000002829

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement