We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Visual Attention Drawn to Meaning, Not What Sticks-Out, In a Scene
News

“Magpie Theory": Our attention is drawn to bright and shiny objects.

Visual Attention Drawn to Meaning, Not What Sticks-Out, In a Scene
News

“Magpie Theory": Our attention is drawn to bright and shiny objects.

Researchers at the UC Davis Center for Mind and Brain mapped hundreds of images (far left) by eye tracking (center left), "meaning" (center right) and salience or outstanding features (far left). Statistical analysis shows that eyes are drawn to "meaningful" areas, not necessarily those that are most outstanding. (John Henderson and Taylor Hayes, UC Davis)
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Visual Attention Drawn to Meaning, Not What Sticks-Out, In a Scene"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Our visual attention is drawn to parts of a scene that have meaning, rather than to those that are salient or “stick out,” according to new research from the Center for Mind and Brain at the University of California, Davis. The findings, published Sept. 25 in the journal Nature Human Behavior, overturn the widely-held model of visual attention.



“A lot of people will have to rethink things,” said psychology professor John Henderson, who led the research. “The saliency hypothesis really is the dominant view.”



Our eyes perceive a wide field of view in front of us, but we only focus our attention on a small part of this field. How do we decide where to direct our attention, without thinking about it?



The dominant theory in attention studies is “visual salience,” Henderson said. Salience means things that “stick out” from the background, like colorful berries on a background of leaves or a brightly lit object in a room.



Saliency is relatively easy to measure. You can map the amount of saliency in different areas of a picture by measuring relative contrast or brightness, for example.



Henderson called this the “magpie theory": Our attention is drawn to bright and shiny objects.



“It becomes obvious, though, that it can’t be right,” he said, otherwise we would constantly be distracted.



Making a map of meaning



Henderson and postdoctoral researcher Taylor Hayes set out to test whether attention is guided instead by how “meaningful” we find an area within our view. They first had to construct “meaning maps” of test scenes, where different parts of the scene had different levels of meaning to an observer. 



To make their meaning maps, Henderson and Hayes took images of scenes, broke them up into overlapping circular tiles and submitted the individual tiles to the online crowdsourcing service Mechanical Turk, asking users to rate the tiles for meaning.



Based on the voting results, the researchers assigned levels of meaning to different areas of images and created meaning maps comparable to saliency maps of the same scenes.



Next, they tracked the eye movements of volunteers as they looked at the scenes. Those eyetracks gave them maps of what parts of images attracted the most attention. These “attention maps” were closer to the meaning maps than the saliency maps, Henderson said.



In search of meaning



Henderson and Hayes don’t yet have firm data on what makes part of a scene meaningful, although they have some ideas. For example, a cluttered table or shelf attracted more attention than a highly salient splash of sunlight on a wall. With further work, they hope to develop a “taxonomy of meaning,” Henderson said.



Although the research is aimed at a fundamental understanding of how visual attention works, there could be some near-term applications, Henderson said, for example, in developing automated visual systems that allow computers to scan security footage or to automatically identify or caption images online.



This article has been republished from 
materials provided by UC Davis. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement