We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

This Week on NeuroScientistNews: 23 March – 27 March

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Protection against neurodegeneration; association between migraine and carpal tunnel syndrome; treatment for traumatic brain injury, and more.


Cold-shock protein protects against neurodegeneration


In the adult brain, communication between neurons is constantly remodeled by the elimination of old synapses and the formation of new ones. Patients with neurodegenerative diseases have fewer synapses compared to normally aging adults, suggesting that their brains have decreased structural plasticity. While it is difficult to analyze this plasticity across aging in humans, research on hibernating animals provides an important model to study structural plasticity at a molecular level.


Study shows association between migraine and carpal tunnel syndrome


Patients with carpal tunnel syndrome (CTS) are more than twice as likely to have migraine headaches, reports a study in Plastic and Reconstructive Surgery -- Global Open®, the official open-access medical journal of the American Society of Plastic Surgeons. The association also runs in the other direction, with migraine patients having higher odds of carpal tunnel syndrome, according to research by Dr. Huay-Zong Law and colleagues of University of Texas Southwestern Medical Center at Dallas. The findings add a new piece of evidence in the ongoing debate over the use of nerve decompression surgery as a treatment for migraine headaches.


Research into brain’s ability to heal itself offers hope for novel treatment of traumatic brain injury


Innovative angles of attack in research that focus on how the human brain protects and repairs itself will help develop treatments for one of the most common, costly, deadly and scientifically frustrating medical conditions worldwide: traumatic brain injury (TBI). In an extensive opinion piece recently published online in Expert Opinion on Investigational Drugs, Henry Ford Hospital researcher Ye Xiong, M.D., Ph.D., makes the case for pioneering work underway in Detroit, Michigan, and elsewhere seeking to understand and repair brain function at the molecular level.


Mutations taking place only in the brain identified as the cause of intractable epilepsy


Epilepsy afflicts more than 50 million people worldwide. Many epilepsy patients can control their symptoms through medication, but about 30% suffer from intractable epilepsy and are unable to manage the disease with drugs. Intractable epilepsy causes multiple seizures, permanent mental, physical, and developmental disabilities, and even death. Therefore, surgical removal of the affected area from the brain has been used as a treatment for patients with medically refractory seizures, but this too fails to provide a complete solution because only 60% of the patients who undergo surgery are rendered free of seizures.


Carbon nanotube fibers make superior links to brain


Carbon nanotube fibers invented at Rice University may provide the best way to communicate directly with the brain. The fibers have proven superior to metal electrodes for deep brain stimulation and to read signals from a neuronal network. Because they provide a two-way connection, they show promise for treating patients with neurological disorders while monitoring the real-time response of neural circuits in areas that control movement, mood and bodily functions.