
Dr. Allysa Stern
Scientist II - Cell Microsystems
Dr. Stern obtained a Ph.D. and Master of Science in Physiology from North Carolina State University and a Bachelor of Science in Animal Science. Her background is in comparative physiology, with a concentration in cell biology and developing 2D and 3D in vitro models for drug and toxicological studies. Dr. Stern is currently a scientist on the Product Applications team at Cell Microsystems where she focuses on developing novel 2D and 3D cellular workflows using the CellRaft Technology.
Latest Content

Webinar
Cloning in the Third Dimension: Breakthroughs in 3D Biology
Traditional organoid culture can present challenges for the downstream analysis of single organoids. In this webinar, Dr. Allysa Stern will discuss a unique workflow that enables clonal organoid development, monitoring of iPSC differentiation over time and automated isolation of single organoids.
Dr. Scott Magness will then present a case related to his group’s work investigating tumor cell heterogeneity through clonal organoid morphology and transcriptomics. He will discuss new approaches using single organoid transcriptomics to evaluate organoids derived from single cells from gastric dysplastic tissues and how this approach might reveal new ways to investigate tumor cell heterogeneity and evasion of some cells from cancer treatments.
Dr. Scott Magness will then present a case related to his group’s work investigating tumor cell heterogeneity through clonal organoid morphology and transcriptomics. He will discuss new approaches using single organoid transcriptomics to evaluate organoids derived from single cells from gastric dysplastic tissues and how this approach might reveal new ways to investigate tumor cell heterogeneity and evasion of some cells from cancer treatments.

Webinar
Cloning in the Third Dimension: Breakthroughs in 3D Biology
Traditional organoid culture can present challenges for the downstream analysis of single organoids. In this webinar, Dr. Allysa Stern will discuss a unique workflow that enables clonal organoid development, monitoring of iPSC differentiation over time and automated isolation of single organoids.
Dr. Scott Magness will then present a case related to his group’s work investigating tumor cell heterogeneity through clonal organoid morphology and transcriptomics. He will discuss new approaches using single organoid transcriptomics to evaluate organoids derived from single cells from gastric dysplastic tissues and how this approach might reveal new ways to investigate tumor cell heterogeneity and evasion of some cells from cancer treatments.
Dr. Scott Magness will then present a case related to his group’s work investigating tumor cell heterogeneity through clonal organoid morphology and transcriptomics. He will discuss new approaches using single organoid transcriptomics to evaluate organoids derived from single cells from gastric dysplastic tissues and how this approach might reveal new ways to investigate tumor cell heterogeneity and evasion of some cells from cancer treatments.
Advertisement