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Abstract

Background: Each omics platform is now able to generate a large amount of data.
Genomics, proteomics, metabolomics, interactomics are compiled at an ever
increasing pace and now form a core part of the fundamental systems biology
framework. Recently, several integrative approaches have been proposed to extract
meaningful information. However, these approaches lack of visualisation outputs to
fully unravel the complex associations between different biological entities.

Results: The multivariate statistical approaches ‘regularized Canonical Correlation
Analysis’ and ‘sparse Partial Least Squares regression’ were recently developed to
integrate two types of highly dimensional ‘omics’ data and to select relevant
information. Using the results of these methods, we propose to revisit few graphical
outputs to better understand the relationships between two ‘omics’ data and to better
visualise the correlation structure between the different biological entities. These
graphical outputs include Correlation Circle plots, Relevance Networks and Clustered
Image Maps. We demonstrate the usefulness of such graphical outputs on several
biological data sets and further assess their biological relevance using gene ontology
analysis.

Conclusions: Such graphical outputs are undoubtedly useful to aid the interpretation
of these promising integrative analysis tools and will certainly help in addressing
fundamental biological questions and understanding systems as a whole.

Availability: The graphical tools described in this paper are implemented in the freely
available R package mixOmics and in its associated web application.

Introduction
‘Omics’ data now form a core part of systems biology by enabling researchers to under-
stand the integrated functions of a living organism. However, the available abundance
of such data (genomics, proteomics, metabolomics, interactomics ...) is not a guarantee
of obtaining useful information in the investigated system if the data are not properly
processed and analyzed to highlight this useful information. A major challenge with the
integration of omics data is therefore the extraction of discernable biological meaning
from multiple omics data.
Recently, several authors have further improved statistical methodologies to inte-

grate two highly dimensional data sets. Such methodologies include regularized and
sparse variants of Canonical Correlation Analysis (CCA) [1-5] and Partial Least Squares
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(PLS) regression [6,7] - also referred as projection-based methods. These multivariate
approaches aim at unravelling the correlation structure between two sets of data mea-
sured on the same samples. In addition, they achieve dimension reduction by sum-
marizing the data into a small number of components or variates, which are linear
combinations of the original variables. These exploratory approaches aim at exploit-
ing coexpression between disparate types of biological measures instead of differential
expression. The assumption relies on the fact that similar expression patterns across
a set of samples are hypothesized to have a functional relationship [8]. In order to
better understand the link between the different biological entities from highly dimen-
sional data sets, several clustering techniques have been proposed in the literature.
One category of approaches include simple criteria matching, which order the vari-
ables according to fold-change or univariate statistical tests for a given threshold. These
variables are considered to be ‘clustered’ [9]. Other methods, such as self-organizing
maps, use Euclidian distances. However, they are known to encounter difficulties in
finding variables “negatively” (oppositely) associated with each other [10]. Another
way is to comprehensively compare all variables against each other using a similar-
ity measure, such as Pearson correlation coefficient [10,11], or mutual information [9].
Once these associations are graphically represented, the aim is to obtain fresh insights
into the different biological functional levels, which then act as a foundation for new
hypotheses.
So far, most the statistical integrative projection-based approaches cited above have

been limited to numerical results, and little attention has been paid to either the interpre-
tation of the results or the graphical outputs. In this article, we propose to revisit some
graphical outputs mostly dedicated to exploratory approaches to highlight associations
between two different types of biological entities. We have improved Correlation Circles
plots, Relevance Networks and Clustered Image Maps (CIM) to be specifically adapted to
the results of our previously published CCA or PLS methods [1,4,7]. These graphical out-
puts are implemented in the R package mixOmicsa that is dedicated to the integrative
analysis of ‘omics’ data [12]. For users not familiar with the R programming language, a
web application is also available at http://mixomics.qfab.org.
In the following ‘Background’ Section, we first describe the three graphical outputs used

in mixOmics to visualise pair-wise associations between two types of biological vari-
ables. In the ‘Results and discussion’ Section, we assess the relevance of the proposed
CIM and Relevance Networks on a simulation study. On two real data sets, we provide a
thorough biological interpretation of the results obtained and compare the inferred statis-
tical networks to known biological networks using data knowledge driven analyses. The
‘Methods’ Section describes how to compute the pair-wise similarity matrix to construct
the graphical representations proposed.

Background
We first briefly introduce PLS and CCA methodologies and their associated variants
recently developed for the highly dimensional case. More details about the approaches are
given in the ‘Methods’ Section. We review the three main graphical outputs proposed in
mixOmics: Correlation Circle plots, Relevance Networks and Clustered Image Maps to
visualise pair-wise associations between disparate biological entities highlighted by CCA
or PLS.

http://mixomics.qfab.org
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Integrative approaches

The two-block data matrices to be integrated are denoted X(n × p) and Y (n × q), where
p and q are the total number of variables measured on the same n subjects. For example
X is a gene expression matrix and Y contains metabolites concentrations, both tran-
scripts and metabolites being measured on the same patients. CCA and PLS search for
the largest correlation and covariance respectively between orthogonal components, also
called variates, which are linear combinations of the X and Y variables. The number of
chosen dimensions or components in CCA or PLS is d, with d ≤ min(p, q) for CCA and
d ≤ p for PLS.
In classical CCA and PLS regression, all variables from both data sets are included in

the fitted linear combinations or variates. However, in the context of high throughput bio-
logical data, the number of variables often exceeds tens of thousands. In this case, linear
combinations of the entire set of features make biological interpretability difficult as they
contain too many variables to perform further tests or to generate biological hypothe-
ses. Most importantly, the high dimensionality and the insufficient sample size lead to
computational problems as CCA requires the computation of the inverse of the covari-
ance matrices of X and Y. To circumvent this problem, regularized CCA (rCCA) has
been recently proposed by [1] when dealing with ill-conditioned covariance matrices by
adding a regularization term on their diagonal. Sparse PLS (sPLS) has been recently pro-
posed to perform simultaneous variable selection in the two data sets [4,7]. sPLS includes
Lasso penalization terms on the loading vectors (the vectors which weight are used in the
determination of the PLS variates) to shrink some of the coefficients towards zero.
rCCA and sPLS are both implemented in the R package mixOmics [12]. These

methodologies require to choose or tune the number of dimensions d, the regularization
parameters for rCCA and the number of variables to select in both data sets for sPLS.
Guidelines to choose these parameters are discussed in [1,7]. The biological relevancy of
rCCA and sPLS has been recently demonstrated in several biological studies [13-18].

Correlation Circle plots

Correlation Circle plots were primarily used for PCA outputs to visualise the relation-
ship between variates and variables of the same type, where one single omics data set
is analysed [19-23]. The use of such a graphical tool was then generalised to represent
variables of two different types using statistical integrative approaches such as Canonical
Correlation Analysis and Partial Least Squares regression [24].
Although not very well known, this plot is an enlightening tool for data interpreta-

tion, as it enables a graphical examination of the relationships between variables and
variates. In this plot, the coordinates of the variables are obtained by calculating the cor-
relation between each original variable and their associated component (see Figure 1(a)).
Because variables are usually centered and standardized, the correlation between each
variable and a component is simply the projection of the variable on the axis defined by
the component.
In this plot, variables can be represented as vectors (see Figure 1(b)) and the relationship

(correlation) between the two types of variables can be approximated by the inner product
between the associated vectors. The inner product is defined as the product of the two
vectors lengths and their cosine angle. Thus, the nature of the correlation between two
variables can be visualised through the angles between two vectors (Figure 1(b)): if the
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Figure 1 Correlation Circle plot. a) Coordinates of the X-variables on the plane defined by the first two
variates U1 and U2. b) The correlation between two variables is positive if the angle is sharp cos(α) > 0,
negative if the angle is obtuse cos(θ) < 0, and null if the vectors are perpendicular cos(β) ≈ 0.

angle is sharp, the correlation is positive, if the angle is obtuse the correlation is negative
and if the angle is right the correlation is null.
The centered and standardized variables are projected onto the space spanned by

the two chosen components, inside a circle of radius 1. Thus, from the inner product
definition, the longer the distance to the origin, the stronger the relationship between
the variables. The variables closely located to the circumference of radius 1 can be
directly interpreted, since the closeness on the plane corresponds to the closeness in the
d-dimensional variables space.
For variables closely located to the origin, it means that some information can be carried

on other axes and, it might be necessary to visualise the Correlation Circles plots in the
subsequent dimensions (see example in Figure 2).
For the sake of interpretability, variables are not represented as vectors but as the end

points of the vectors in mixOmics. Two circles are usually represented, of radii 0.5 and
1, to better visualise the ‘important’ variables. Figure 2 gives an example of the different
scenarios that can be encountered when visualising the correlation structure between
two data sets. The data come from the simulation study of the following ‘Results and
discussion’ Section.
The variables or groups of variables strongly positively correlated are projected closely

to each other on the Correlation Circle. This is the case, for instance, with XB and YB on
the dimension 2 (Figure 2(a-b)) and XC and Y 1

C on the dimension 3 (Figure 2(b)). When
the correlation is strongly negative, the groups of variables are projected at diametrically
opposite places on the Correlation Circle. This occurs, for instance, withXA and YA on the
dimension 1 (Figure 2(a)) and XC and Y 2

C on the dimension 3 (Figure 2(b)). The variables
or groups of variables that are not correlated are situated 90° one from the other in the
circle (for instance, XA and YB (Figure 2(a)) and XC and YB (Figure 2(b))).
Correlation Circle plots were found to supplement pair wise correlation approaches

[25]. In the high dimensional case, the interpretation of the correlation structure between
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Figure 2 Correlation Circle plots for the simulation study. Correlation Circle plots for dimensions 1 and 2
(a), and 2 and 3 (b). The X and Y variables are represented by thick points and triangles respectively. The
subsets of correlated variables are colored according to the legend. Expression profiles of some positively
and negatively correlated variables across samples (c).

variables from two data sets can be difficult, and a threshold can be chosen to remove
some weaker associations.

Relevance networks

A conceptually simple approach for modelling net-like correlation structures between
two data sets is to use Relevance Networks. This concept was introduced by [10] as a
tool to study associations between pair of variables coming from several types of genomic
data. This method generates a graph where nodes represent variables, and edges repre-
sent variable associations. The Relevance Network is built in a simple manner. First, the
correlation matrix is inferred from the data. Second, for every estimated correlation coef-
ficients exceeding (in absolute value) a prespecified threshold between two variables (say
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0.6), an edge is drawn between these two variables, otherwise, no edge is drawn and these
two variables are considered not associated for this threshold, and the variables/nodes
with no link are not represented in the graph.
The construction of biological networks (gene-gene, protein-protein, etc.) with direct

connections within a variable set is of considerable interest amongst biologists, and has
been extensively used in the literature. Therefore, we will not consider this case and
focus rather on the representation between variables of two different types. We will
thus display Relevance Networks through the use of bipartite graph (or bigraph), where
variables/nodes from X can only be connected to variables/nodes from Y.
Instead of computing the Pearson correlation coefficients between each pair of vari-

ables as was proposed by [10], bipartite networks are inferred using a pair-wise similarity
matrix directly obtained from the outputs of the integrative approaches (regularized)
CCA and (sparse) PLS. The values in the similarity matrix are computed as the corre-
lation between the two types of projected variables onto the space spanned by the first
components retained in the analysis. The values in the similarity matrix can be seen as a
robust approximation of the Pearson correlation (see Section ‘Methods’).
The advantage of relevance networks is their ability to simultaneously represent posi-

tive and negative correlations, which are missed by methods using Euclidian distances or
mutual information. Another advantage is their ability to represent genes in several path-
ways, and, most importantly for our purpose, to represent correlations across disparate
biological measures. One of the main limitation of relevance networks is that it requires
extensive computing ressources asmentioned by [26] to compute the comprehensive pair-
wise associations when the underlying network is fully connected, i.e. when there is an
edge between any pair of two types X and Y variables (see also [27] who recently pro-
posed an R package for fast computation of the correlations). In the case of the sparse
PLS, extensive computing is not required since the pair-wise association are only com-
puted for the variables selected by the approach. A threshold is also proposed to remove
some weaker associations.
Since the relevance networks are visual representations of the correlations between

variables, one looks for clusters or sub-networks of subsets of variables, where the edge
colors indicate the nature of the correlation (positive, negative, strong or weak). Each of
these clusters often highlight a specific correlation structure between the features. More
details about the relevance networks interpretation can be found in the Section ‘Results
and discussion’.

Clustered Image Maps

Clustered Image Maps (CIM), also called ‘clustered correlation’ or ‘heatmaps’ were first
introduced by [11,28,29] to represent either the expression value of a single data set, or the
Pearson correlation between two matched data sets [11,30]. This type of representation is
based on a hierarchical clustering simultaneously operating on the rows and columns of a
real-valued similarity matrix. This is graphically represented as a 2-dimensional coloured
image, where each entry of the matrix is coloured on the basis of its value, and where the
rows and columns are reordered according to the hierarchical clustering. Dendrograms
(tree diagrams) illustrating the arrangement of the clusters produced by the hiearchical
clustering are added to the left (or right) side and to the top (or bottom) of the image. The
color in the heatmap indicates the nature of the correlation between subsets of variables
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(positive, negative, strong or weak), while the dendrogram indicate the proximity between
correlated variables. In practice, one looks for well defined large rectangles or squares of
the same color corresponding to long branches of the dendrograms. More details about
the CIM interpretation can be found in the the Section ‘Results and discussion’.
The similarity matrix represented by the CIM is the same as in the relevance networks

described above. CIM is a visualisation tool that complements well the Correlation Cir-
cles plots and the Relevance Networks as clusters of subsets of variables of the same type
correlated with subsets of variables of the other type can be observed. This complemen-
tarity of three graphical outputs is illustrated in the Section ‘Results and discussion’ on
the Nutrimouse case study.

Implementation in mixOmics

Correlation Circles plots, Relevance Networks and Clustered Image Maps are imple-
mented in the R package mixOmics [12] to be applied to a variety of integrative
approaches implemented in the package, such as rCCA and sPLS methodologies. Full
tutorials on how to analyse data sets with different methodologies and how to obtain spe-
cific graphical outputs with desired legends and colors are available on the website http://
www.math.univ-toulouse.fr/~biostat/mixOmics. For users not familiar with the R pro-
gramming language, an associated web application is available at http://mixomics.qfab.
org and provides a Cytoscape plugin to display the Relevance Networks in an attractive
manner.

Results and discussion
We investigate the relevance of Correlation Circle plot, Relevance Networks and CIM
representations, firstly on a simulated data set to assess if the proposed graphical outputs
are able to highlight pair-wise association structure between two data sets, and secondly
on two biological data sets to assess the biological relevance of such graphical tools.

Simulated data

Data sets

We generated two data setsX and Y with an equal number of 30 observations in each data
set. A subset of relevant variables in X were associated with a subset of relevant variables
in Y according to the model described below, and the remaining variables were simulated
as noise. This simulation study enables to assess if the proposed graphical representations
allow differentiate the associated groups of relevant variables from the noisy variables.

• The relevant X and Y variables were generated according to a normal distribution
with zero mean and covariance matrix � defined by :

� =
[

�XX �XY

�′
XY �YY

]
, with �XY =

⎡
⎢⎢⎣
AXY 0 0

0 BXY 0

0 0 CXY

⎤
⎥⎥⎦ .

Details about the covariance matrices can be found in Additional file 1.
• X contains three independent sets of respectively 10, 10 and 3 cross-correlated

variables: XA = [
X1
A, . . . ,X

10
A

]
, XB = [

X1
B, . . . ,X10

B
]
and XC = [

X1
C ,X

2
C ,X

3
C
]
; and Y

http://www.math.univ-toulouse.fr/~biostat/mixOmics
http://www.math.univ-toulouse.fr/~biostat/mixOmics
http://mixomics.qfab.org
http://mixomics.qfab.org
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contains three independent sets of respectively 10, 5 and 2 cross-correlated variables:
YA = [

Y 1
A, . . . ,Y

10
A

]
, YB = [

Y 1
B , . . . ,Y 5

B
]
and YC = [

Y 1
C ,Y

2
C
]
. These groups of variables

are associated with each other according to the cross-correlation matrix �XY .
• The relevant variables in XA and YA were generated with a negatively

cross-correlation varying between −0.93 and −0.51. The variables in XB and YB were
generated with a positive cross-correlation varying between 0.5 and 0.85; and the
variables in XC and YC were generated with an absolute cross-correlation varying
between 0.81 and 0.93, XC is positively correlated with Y 1

C and is negatively
correlated with Y 2

C .
• The irrelevant (noisy) variables were simulated with a normal distribution with zero

mean and covariance identity matrices and were added to the sets such that final data
set contained 100 variables for X and 50 variables for Y. These variables are
independent within the sets X and Y and with each other.

Analysis process

PLS canonical mode (PLS-can) was applied to these data sets and the graphical rep-
resentations Correlation Circle plots, CIM and Relevance Networks resulting from the
statistical approach were plotted. The first three dimensions were chosen for these
graphical displays (correlation values between latent variables equal to 0.97, 0.94 and
0.95 respectively on each dimension, before decreasing for the following dimensions,
Section ‘Methods’ gives the original references to the parameters tuning for the different
approaches in mixOmics).

Graphical outputs

Figure 2 displays the corresponding correlation circle plots. Figure 2(a) highlights the
strong negative correlation between clusters XA and YA on dimension 1 and the strong
positive correlation between clusters XB and YB on dimension 2. Figure 2(b) underlines a
strong positive correlation between XC and Y 1

C and a strong negative correlation between
the latter and Y 2

C on dimension 3. For that last case, Figure 2(c) represents the expres-
sion profiles of the variables across the 30 individuals and illustrates in a more intuitive
manner the nature of the correlation between the variables.
The pair-wise similarity matrix was then computed using our proposed method (see

Section ‘Methods’) for the first three PLS dimensions in order to display the CIM
(Figure 3). The Euclidian distance and the Ward method were used for the hierarchical
clustering. In the CIM display, each coloured block represents an association between
subsets of the X-variables and the Y -variables. The green colour indicates that the X and
Y clusters are positively correlated (cluster XB and YB, and cluster XC and Y 1

C), and the
red colour indicates a negative correlation in the X-Y cluster (cluster XA and YA, and clus-
ter XC and Y 2

C), whereas yellow indicate weaker correlation values. The dendrograms on
the top and the left hand side of the map indicate how the clusters join, the longer the
distance, the sharper the boundary between the coloured blocks.
The variables with blank names indicate variables with weak correlations (irrelevant

variables). The CIM details in a more comprehensive manner than the correlation circle
plots the correlations between all variables.
The Relevance Networks obtained with PLS-can are displayed in Figure 4. Similarly

to CIM representation, the pair-wise similarity matrix was computed for the first three
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Figure 3 CIM for the simulation study. CIM on the simulated data with the PLS-can method. The green and
red colours indicate positive and negative correlations respectively, whereas yellow indicate small correlation
values. The clusters of variables are colored on the top and left side of the CIM as in Figure 2. The variables
with blank names indicate variables with weak correlations (irrelevant variables).

dimensions (see Section ‘Methods’). Three relevant components were obtained setting a
threshold to 0.5, linking the corresponding correlated subsets: XA with YA, XB with YB
and XC with YC . Note that none of the irrelevant variables were displayed in the net-
work, demonstrating the good ability of the PLS approach to estimate the real simulated
correlations.

Comparisonwith rCCA

The rCCA approach was also applied to these data sets with regularization parameters
λ1 = 0.889 and λ2 = 0.889 for the first three dimensions (canonical values obtained
were of 0.959, 0.925, and 0.881 on each dimension respectively, followed by much lower
values). As expected, the graphical outputs were very similar to those with PLS-can.
In this simulation setting, accuracy of inferred networks from rCCA and PLS-can were

similar, while networks inferred with Pearson correlation gave a much higher error rate,
especially for a small number of samples (see Additional file 2).
This simulation study shows that Correlation Circle plots, Relevance Networks and

CIM are able to highlight the relevant variables amongst the noisy ones and pinpoint the
pair-wise association structure between the two data sets. In the following, we illustrate
the use of such graphical outputs on real data sets and discuss the biological relevancy of
the obtained results.

Biological data

Data sets

These data sets are publicly available in the mixOmics package [12] and provide good
illustrative examples for this Section. However, much larger biological data sets could be
analysed through mixOmics as the integrative approaches rCCA and sPLS have been
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Figure 4 Relevance Networks for the simulation study. Relevance Networks obtained with sPLS-can on
the simulated data using the network function in the mixOmics package. Green and red edges indicates
positive and negative correlation respectively. X and Y variables are represented respectively as circles and
rectangles.

specifically developed to handle large data sets (several thousands of variables in both
data sets).

Nutrimouse data. The data come from a nutrigenomic study [31] in which 40mice from
two genotypes (wild-type and PPARα -/- deficient) were fed with five diets with con-
trasted fatty acid compositions. Oils used for experimental diets preparation were corn
and colza oils (50/50) for a reference diet (REF), hydrogenated coconut oil for a saturated
fatty acid diet (COC), sunflower oil for an Omega6 fatty acid rich diet (SUN), linseed oil
for an Omega3 rich diet (LIN) and corn/colza/enriched fish oils (43/43/14) for the FISH
diet. Expression of 120 genes in liver cells were acquired through microarray experiment
and concentrations of 21 hepatic fatty acids were measured by gas chromatography. The
study therefore includes two data matrices of size (40 × 120) for the gene expression and
(40 × 21) for the fatty acids measurements.

Liver toxicity data. The data come from a liver toxicity study [32] in which 64 male rats
of the inbred strain Fisher F344/N were exposed to low (50 mg/kg or 150 mg/kg) or to
high (1500 mg/kg or 2000 mg/kg) doses of acetaminophen (paracetamol) in a controlled
experiment. Necropsies were performed at 6, 18, 24 and 48 hours after exposure and the
mRNA from the liver was extracted. Ten clinical chemistry measurements of variables
containing markers for liver injury are available for each subject and the serum enzymes
levels are numerically measured. The study therefore includes two data matrices of size
(64 × 3116) for the gene expression and (64 × 10) for the clinical measurements.
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Analysis process

Several methodologies are implemented in mixOmics to integrate data from two
different types, to model the relationships between the two types of features in an appro-
priate manner (see Section ‘Methods’ for a brief description of the models). In the
Nutrimouse data, we applied the methodology sPLS-can as the aim is to highlight highly
correlated subsets of genes and hepatic fatty acids in the two data sets. This study was
previously analysed with another approach (rCCA [1]). In this paper, the aim is to illus-
trate the usefulness of combining the three graphical outputs to interpret such results,
and assessing the biological relevance of the Relevance Networks obtained.
In the Liver Toxicity data, we applied the methodology sPLS-reg as the aim is to high-

light a subset of correlated genes which expression can predict the clinical chemistry
measurements [33]. This analysis was performed in a previous paper to demonstrate the
numerical good results of the sPLS-reg approach but no focus was made on the biological
relevance of the results or on the use of variable graphical outputs. In this paper, we focus
instead on the biological relevancy of the resulting Relevance Networks. In both studies,
using these integrative methodologies and associated graphical outputs, the biological
questions we ask are: which subsets of variables from both types are strongly positively
or negatively correlated with each other? Do these selected features bring any relevant
insight in relation to system under study?
Two parameters need to be tune in sPLS: the number of dimensions and the number of

variables to select on each dimension. For both data sets, three dimensions were chosen
(see numerical results presented in [1,7]). To illustrate the use of the proposed graphical
outputs, we arbitrarily chose to select 50 transcripts or genes on each dimension. This
rather large selection size (150 transcript or genes) is justified by the Gene Ontology (GO)
analysis which require a sufficient number of variables to assess their biological relevance.
The similarity matrices were computed from the sPLSmethod on the basis of the selected
variables.
To highlight the strongest variable associations only, variables with an association score

greater than 0.6 in absolute value were chosen to infer the Relevance Networks. This
threshold was arbitrarily chosen in order to obtain biologically interpretable networks
that were neither too sparse nor too dense. The obtained networks were then used as
an input to Cytoscape [34] for visualization and GeneGo [35] and topGO [36,37] were
used to assess the biological relevancy of the inferred associations between the different
types of variables (see Additional file 3 for the R script used and how to export the net-
work to a Cytoscape file format). This analysis is similar to the one performed by [38]
who assessed the results of rCCA in a metabolic syndrome study. We then compared
the obtained inferred networks to known biological networks through data driven and
knowledge driven biological analyses.

Application to Nutrimouse data

Preliminary analysis comparing the different graphical outputs. In order to illustrate
the usefulness of the variable graphical outputs in a real case study, we first discuss the
outputs obtained on the first two components, where 50 genes were selected on each
dimension. The Correlation Circle plot (Figure 5) displays all fatty acids and the genes
selected on each component (a 100 in total in this plot). It highlights subsets of vari-
ables that are important to define each component. For example C18:2ω6, C20:2ω6 and
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Figure 5 Correlation Circle plots for the Nutrimouse study. Correlation Circle plots for the first two sPLS
dimensions (100 genes selected in total).

C16:0 are the fatty acids which variation mainly participate to the definition of the sPLS
component 2 (top and bottom of the y-axis). Similarly, genes such as CAR1, ACOTH,
SIAT4C, SR.BI, Ntop are positively correlated to each other, and to the fatty acid C16:1ω9
and their variation participate to the definition of the sPLS component 1 (left-hand side
of the x-axis).
While the CIM better highlights different clusters of variables and their degree of cor-

relation (indicated by the colour code) than the Correlation Circle plots (Figure 6), the
visualisation of the correlation within variables sets is more difficult to observe. For
example, the Correlation Circle plot highlights a negative correlation between [C18:2ω6,
C20:2ω6] and C16:0, which is less obvious in the CIM.
Finally, the relevance network representation (Figure 7) adds another layer of infor-

mation as it allows the visualisation of variable groups in the network. In this case, the
network highlights two main subsets of genes and fatty acids (top and bottom) which
seem to contain very specific information in each of these groups. This information is
slightly suggested on the CIM after a careful interpretation of the dendrograms, but is
barely observable in the Correlation Circle plot. This comparison demonstrates the use-
fulness of such graphical outputs, as well as their complementarity to unravel the complex
relationship structure between these different biological features. In the following, we
discuss the biological relevance of the subsets of genes and fatty acids highlighted by
the full sPLS-can analysis (with 3 sPLS components) using GeneGo and topGO. For an
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Figure 6 CIM for the Nutrimouse study. CIM for the first two sPLS dimensions (100 genes selected in total).
Green (red) indicate high positive (negative) correlation.

easier visualisation, the cytoscape software was used to represent the networks, but the
similarity matrix was estimated with mixOmics.

GeneGO analysis. The Relevance Network generated for the Nutrimouse data at a
threshold 0.6 highlighted two subsets of fatty acids, and three subsets of genes (Figure 8).
Considering first the fatty acids, the yellow group on the left-hand side contained all the
ω6 fatty acids from the data set (C18:2ω6, C20:2ω6, C20:4ω6, C20:3ω6, C22:5ω6, and
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Figure 8 Relevance Networks for the Nutrimouse study. Relevance Networks generated with Cytoscape
based on the proposed estimation of the pair-wise associations between seleted genes and fatty acids.
Green and red edges indicate positive and negative correlation respectively.

C22:4ω6). The second group of fatty acids consisted of those in the ω9, ω7, and saturated
fatty acid groups, along with the two ω3 fatty acids included in the data set. These groups
made sense in the context of lipid biosynthetic pathways – one biosynthetic pathway leads
to the production of ω6 lipids, while the ω9, ω7 and saturated lipids are the product of an
alternative lipid biosynthetic pathway (orange nodes). The ω3 group was the exception in
our analysis – it was generated by a pathway related to the ω6 pathway (yellow nodes),
but based on the connectivity in our network, these fatty acids partitionned with the ω7,
ω9 and saturated fatty acid group [39].
The three gene sets defined by network topology were: (1) a set of genes that were

negatively correlated with only the ω6 lipid group; (2) a set of genes that were negatively
correlated with the ω6 group, but largely positively correlated with the other lipid group;
and (3) a gene set that was only associated with the second lipid group, with positive
correlations to the ω3, ω7, ω9, and saturated fatty acids C14:0 and C16:0, but negatively
correlated with the C18:0.
The ω6 group showed only negative correlations with genes selected by sPLS-can. This

was consistent with the observations made by [31] that feeding mice a diet rich in ω6 fatty
acids lead to the down regulation of several genes on the array.
The second group of genes contained many targets of PPARα, a nuclear receptor tran-

scription factor associated with the high-level regulation lipid metabolism (dark blue
nodes). PPARα targets are expected to be associated with long-chain polyunsaturated
fatty acids from the ω3 family, while the final subset of genes involved in lipid biosynthe-
sis is expected to be closely associated with the saturated and monosaturated fatty acids
of the ω7 and ω9 families. Both of these associations were apparent in the network. An
in-depth analysis of the Nutrimouse data is behind the scope of this article. The reader
can refer to [31,39] for more details about the underlying biological interpretation.

Application to Liver Toxicity data

Visualization of the association between variables Relevance Networks for the Liver
Toxicity data were generated from the results obtained with the sPLS-reg method. The
selected variables with a pair-wise association score greater than 0.6 in absolute value
were used as an input to Cytoscape (Figure 9), green (red) edge color represent a positive
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Figure 9 Relevance Networks for the Liver Toxicity study. Relevance Networks generated with Cytoscape
based on the proposed estimation of the pair-wise associations between selected genes and clinical
variables. Green and red edges indicate positive and negative correlation respectively. The network
contained three groups of clinical chemistry measurements (white nodes): A [ALB], B [CHOLE] and C [ALT,
AST, BUN, TBA] and four groups of genes (colored nodes) denoted 1, 2, 3 and 4.

(negative) correlation. This network contained three groups of clinical chemistry mea-
surements (white nodes) denoted A, B and C and four groups of genes (colored nodes)
denoted 1, 2, 3 and 4. Considering first the chemistry measurements, groups A and B
only consisted of albumin [ALB] and cholesterol [CHOLE] levels respectively. Group
C contained indicators of liver injury (Alanine Aminotransferase [ALT] and Aspar-
tate aminotransferase [AST]), indication of renal injury (urea nitrogen [BUN]), and
assessment of cholestasis – bile flow interruption (total bile acids [TBA]).
The four gene subsets defined by network topology (Figure 9) were: group 1: a set of

genes that were positively correlated with the cholesterol levels B but negatively correlated
with C; group 2, a set of genes that were negatively correlated with ALB levels only (group
A); group 3, a set of genes positively correlated with group C and negatively correlated
with group B; and group 4 a gene set with only positive correlations with group C.

Biological relevance of the extracted genes. Hierarchical clustering (heatmap) of the
biological samples on the extracted genes is displayed in Figure 10. This clustering high-
lights the groups of rats which were treated with different doses of acetaminophen (also
found in [32]). Clusters labelled (coloured at the top of the heatmap) with either no (vio-
let), moderate (cyan) or severe (magenta) necrosis of the centrilobular region of the rat
liver were obtained by using the expression values of the genes extracted from the net-
work. Levels of the clinical chemistry measurements on each group of samples are given
in Additional file 4. Figure 10 also highlights the differences in gene expression profiles
between each gene cluster (coloured in dark brown, brown, orange and yellow at the
left side of the heatmap). Gene expression differences are clearly observed between the
clusters.
Note that this heatmap represents the relationship between the samples (the rats) and

the variables (gene expression) and the color inside the heatmap indicates the expression
values of the genes, whereas the CIM represents the relationship between two groups
of variables (clinical variables and gene expression) and the color inside the heatmap
indicates the correlation between the variables.



González et al. BioDataMining 2012, 5:19 Page 16 of 23
http://www.biodatamining.org/content/5/1/19

−1.75 −0.88 0 0.88 1.75

Color key

15
0m

g/
kg

 0
6h

r

15
0m

g/
kg

 0
6h

r

15
0m

g/
kg

 0
6h

r

15
0m

g/
kg

 0
6h

r

50
m

g/
kg

 0
6h

r

15
0m

g/
kg

 2
4h

r

50
m

g/
kg

 0
6h

r

15
0m

g/
kg

 2
4h

r

50
m

g/
kg

 0
6h

r

50
m

g/
kg

 0
6h

r

50
m

g/
kg

 2
4h

r

15
0m

g/
kg

 2
4h

r

15
0m

g/
kg

 2
4h

r

50
m

g/
kg

 2
4h

r

50
m

g/
kg

 2
4h

r

50
m

g/
kg

 2
4h

r

15
00

m
g/

kg
 0

6h
r

20
00

m
g/

kg
 0

6h
r

15
00

m
g/

kg
 0

6h
r

15
00

m
g/

kg
 0

6h
r

15
00

m
g/

kg
 0

6h
r

20
00

m
g/

kg
 0

6h
r

20
00

m
g/

kg
 0

6h
r

20
00

m
g/

kg
 0

6h
r

15
0m

g/
kg

 4
8h

r

50
m

g/
kg

 4
8h

r

15
0m

g/
kg

 4
8h

r

15
0m

g/
kg

 4
8h

r

50
m

g/
kg

 4
8h

r

15
0m

g/
kg

 4
8h

r

50
m

g/
kg

 4
8h

r

15
00

m
g/

kg
 4

8h
r

50
m

g/
kg

 1
8h

r

50
m

g/
kg

 1
8h

r

50
m

g/
kg

 1
8h

r

50
m

g/
kg

 4
8h

r

15
0m

g/
kg

 1
8h

r

15
0m

g/
kg

 1
8h

r

15
0m

g/
kg

 1
8h

r

15
0m

g/
kg

 1
8h

r

50
m

g/
kg

 1
8h

r

20
00

m
g/

kg
 4

8h
r

15
00

m
g/

kg
 4

8h
r

20
00

m
g/

kg
 4

8h
r

15
00

m
g/

kg
 4

8h
r

15
00

m
g/

kg
 4

8h
r

20
00

m
g/

kg
 4

8h
r

20
00

m
g/

kg
 4

8h
r

20
00

m
g/

kg
 2

4h
r

15
00

m
g/

kg
 1

8h
r

15
00

m
g/

kg
 1

8h
r

20
00

m
g/

kg
 1

8h
r

15
00

m
g/

kg
 1

8h
r

15
00

m
g/

kg
 2

4h
r

15
00

m
g/

kg
 2

4h
r

20
00

m
g/

kg
 1

8h
r

20
00

m
g/

kg
 1

8h
r

15
00

m
g/

kg
 1

8h
r

20
00

m
g/

kg
 1

8h
r

20
00

m
g/

kg
 2

4h
r

20
00

m
g/

kg
 2

4h
r

15
00

m
g/

kg
 2

4h
r

15
00

m
g/

kg
 2

4h
r

20
00

m
g/

kg
 2

4h
r

A_42_P762202
Slc2a1
Znf593
Emp3
Ywhag
Dynll1
Mboat1
Mcm4
Pdgfa
RGD1562114
AI103652
Npm1
RGD1563365
A_42_P758454
Magoh
Ercc1
Pgs1
Ifrd2
RGD621352
Ddit3
E2f3
Dnlz
Cxcr7
Cdc25a
Synj2
Rnf145
Nol3
S100a9
Hsp90aa1
AW915722
Gas5
Ran
Tgif1
Taf1d
Sdcbp
B3gnt1
A_43_P22616
Hsph1
A_43_P23376
Aen
Dusp5
A_42_P681650
A_42_P769476
Rgs2
Map2k3
Mb
Slc16a6
Sept11
Tcf19
Tapbp
Pttg1
Mvd
Scd
A_43_P11285
RGD1563547
Cyb5b
Mki67
AW143886
Rnaseh2a
A_42_P505480
Elovl6
Clpx
Dio1
Abcd3
Gckr
RGD1307603
Cyb5r3
Ephx2

Figure 10 Hierarchical clustering of the selected genes for the Liver Toxicity study. Hierarchical
clustering of the biological samples using the extracted genes from sPLS-reg network. Agglomerative
hierarchical clustering was derived using the Euclidean distance as the similarity measure and Ward
methodology. The resulting heatmap contains the genes in rows and samples in columns with red indicating
up regulation, green down regulation and black no change. On the top of the heatmap, clusters of the
biological samples are colored in violet, cyan and magenta for no, moderate or severe necrosis respectively.
On the left hand side of the heatmap, gene clusters are shown (dark brown, brown, yellow and orange).

The extracted genes were uploaded into topGO [36,37]. A Gene Ontology (GO)
enrichment analysis from the gene list was then performed. GO terms significantly
enriched include biological processes related to nitric oxidemetabolism and cellular stress
responses, including responses to unfolded proteins. The top GO molecular functions
enriched in the gene set relate to protein binding, nucleotide binding, and enzyme activity
(eg. hydrolase, phosphatase, decarboxylase). Cellular component GO terms enriched in
the set mostly relate to very general locations, however both an endopeptidase complex
and the peroxisome are also present in the list, reinforcing the association of the selected
gene products with proteolysis and the response to stress and unfolded proteins.
The individual gene clusters in the sPLS-reg network (Figure 9) may also be examined

for GO enrichment, as we have done for the larger cluster 4. For example, while examining
the biological process terms associated this cluster, we saw an enrichment for processes
involving xenobiotic transport, and interesting functional enrichments such as positive
regulation of mesenchymal cell proliferation, a process that was previously observed to
occur in other tissues in response to epithelial damage signalling to the underlying mes-
enchyme to initiate proliferation and tissue remodelling [40], and negative regulation of
CREB transcription factor activity, interesting due to the previous association of CREB
transcription factor with responses to cytotoxic stress [41,42], particularly in renal tubular
cells [43].
Analysis of the gene list using the GeneGo [35] network analysis algorithm identified

a total of 14 networks with a significant enrichment of genes in the Relevance Network.
The top five networks were (i) regulation of programmed cell death in response to stress;
(ii) cell cycle and regulation of metabolism; (iii) cholesterol and sterol metabolism; (iv)
regulation of programmed cell death in response to organic substances; (v) response to
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stress and presentation of endogenous antigens. A summary of these networks can be
found in Additional file 5.

Conclusions
Since several methodologies have been recently proposed to jointly analyse two data sets,
the development or the improvement of graphical tools is now crucial to better visualise
and understand complex associations between biological entities. In the omics era in par-
ticular, the deluge of data can make the interpretation of the results extremely difficult.
In our R package mixOmics, we have proposed such graphical tools to ease the inter-
pretation of the implemented integrative methodologies dedicated to the analysis of large
biological data sets.
In this paper, we revisited and further developed three types of graphical displays to

better understand and interpret the results obtained with CCA and PLS related meth-
ods. We thoroughly described how to interpret Correlation Circles plots, which are very
insightful graphical outputs to represent the associations between two types of variables.
To complement the Correlation Circle plots, we proposed two types of graphical displays:
both CIM and Relevance Networks are graphical representations of a pair-wise similarity
matrix directly estimated from the results of the integrative methodologies implemented
in mixOmics. The results obtained on simulated and real data sets illustrated very well
the usefulness of these graphical tools to further explore the relationships between two
omics data sets. The thorough biological interpretation of the obtained inferred networks
using geneGO analysis demonstrated the relevancy of the approach.
Full tutorials are available on http://www.math.univ-toulouse.fr/~biostat/mixOmics

to use all the methodologies and graphical outputs implemented in mixOmics. An
associated web application is also available at http://mixomics.qfab.org and provides a
Cytoscape plugin to display the Relevance Networks in an attractive manner.

Methods
We revisit and further develop graphical outputs to visualise correlation structures
between two data sets. Correlation Circle plots, CIM and Relevance Networks all use as
input by-products of the integrative approaches implemented in the mixOmics package.
Both CIM and the Relevance Networks require the estimation of large scale associa-
tion or pair-wise similarity matrix M as an input. Previously, several similarity measures
have been proposed, including Pearson correlation coefficient [10,29,44,45], entropy and
mutual information [9]. We propose instead a novel approach to estimate a pair-wise
similarity matrix using the results of either PLS or CCA approaches.
We briefly describe the PLS and CCA methodologies and associated variants recently

developed for the highly dimensional case, more details about these approaches can
be found in [1,7]. We then describe how to estimate the pair-wise similarity matrix to
construct Relevance Networks and CIM.

CCA and PLS based methods

Notations

We focus on two-block data matrices denoted X(n × p) and Y (n × q) where the p vari-
ables Xj and q variables Yk are of two types and are measured on the same samples or

http://www.math.univ-toulouse.fr/~biostat/mixOmics
http://mixomics.qfab.org
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observations n, for j = 1, . . . , p and k = 1, . . . , q. We adopt the following notation: Mj
k

represents the element of the kth row and jth column of the matrixM.

CCA

CCA [46] looks for the largest correlation between a linear combination of the variables
in the first set X and a linear combination of the variables in the second set Y. The first
pair maximizes the correlation ρ1 = cor(Xa1,Yb1) subject to var(Xa1) = var(Yb1) = 1.
The subsequent pairs (Xal,Ybl), (l = 2, . . . , min(p, q)) maximize the residual correlation
with the additional requirements that each pair is to be uncorrelated with the previous
pairs. In the following, we will refer to al and bl as the canonical loadings (or weights).
The resulting variables Ul = Xal and Vl = Ybl are called the canonical variates and ρl
are known as the canonical correlations.

PLS

PLS [47] searches for the largest covariance between linear combinations of the X and the
Y variable. The first pair maximises cov(Xa1,Yb1) subject to ||a1|| = ||b1|| = 1. Similar
to CCA, the subsequent pairs (Xal,Ybl), (l = 2, . . . , q) maximize the residual covariance
with the additional requirements that each pair is to be uncorrelated with the previous
pairs. The algorithm of PLS differ from CCA as it is solved in an iterative manner by
sequentially decomposing the data matrices. The al and bl are referred to loading vectors
(or weights) and the linear combinations Ul = Xal and Vl = Ybl as the latent variables
(or variates). Several PLS algorithms have been proposed in the literature, for different
shapes of data (SIMPLS [48], PLS1 and PLS2 [47], PLS-SVD [49]), as well as for different
modelling aims (predictive like PLS2, or modelling like PLS-mode A, see [2,23,50]). In
the present paper, we will refer to a PLS approach with two different aims. PLS-reg (for
PLS-regression mode) is used to model an ‘asymmetric’ or uni-directional relationship
between the two data sets, i.e. we want to predict the matrix Y with the data X. In that
case, the model is Y = AX where A is the matrix of the regression coefficients. PLS-can
(for PLS-canonical mode) is used to model an ‘symmetric’ way and therefore models a bi-
directional relationship. In that case, we would like to model AY = BX where A and B are
the matrices of the regression coefficients. PLS-can and CCA have very similar purposes.

Regularized and sparse basedmethods

rCCA. The high dimensionality and the insufficient sample size lead to computational
problems as CCA requires the computation of the inverse of matrices X′X and Y ′Y . To
circumvent this problem, [1] developed a regularized (or ridge) extension of CCA (rCCA).
rCCA solves the instability of the loadings due to multicollinearity by adding a regular-
ization term on the diagonal of the ill-conditionned matrices, i.e. the covariance matrices.
Thus, highly correlated variables get similar loadings, resulting in a grouping effect. The
regularization terms λ1 and λ2 associated to each data set are chosen by cross-validation
in order to maximize the first canonical correlation.

sPLS. Several sparse PLS have been proposed in the literature to select variables [6,7].
These approaches introduce l1 (Lasso) penalization terms on the loading vectors to shrink
some of the coefficients towards zero, thus allowing for simultaneous variables selection
in the two data sets. The sparse PLS therefore solves the problem of interpretability by
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selecting variables from both sets and therefore providing sparse sets of associated vari-
ables. In the article, we consider the sparse PLS proposed by [7] since both regression
(sPLS-reg) and canonical mode (sPLS-can, [4]) are available. For practical purposes, the
two penalization parameters associated to each data set were replaced by the number of
variable to select on each data set and on each sPLS dimension.

Parameters tuning. Both rCCA and sPLS are implemented in mixOmics. These
approaches require to choose the number of dimensions d and the regulariza-
tion/penalization parameters associated to X and Y. For rCCA, the choice of these
parameters is based on cross-validation (see [1] for more details). For sPLS, depending
on the modes, several criteria are available to choose these parameters. They are based
on theQ2 criterion for the regression mode, or on the maximisation of the correlation for
the canonical mode (as was also proposed by [2,5], see the original article [7] for more
details).

Pair-wise variable associations for CCA

The similarity measure that we propose to use is analogous to a correlation coefficient.
Firstly, similar to a Correlation Circle output, the Xj and Yk variables are projected onto
a low dimensional space. Let d ≤ min(p, q) the chosen dimensions to adequately account
for the data association, and let Zl = Ul +Vl the equiangular vector between the canon-
ical variates Ul and Vl (l = 1, . . . , d). The coordinates of the variable Xj and Yk are
obtained by projecting them on the axes defined by Zl. The projection on the Z axes
seems the most natural as X and Y are symmetrically analysed in CCA. Furthermore, [22]
showed that the Z variables have the property to be the closest to X and Y, i.e. the sum of
their squared multiple correlation coefficients with X and with Y is maximal.
Let xj = (xj1, . . . , x

j
d)

′ and yk = (yk1, . . . , y
k
d)

′ the coordinates of the variable Xj and Yk

respectively on the axes defined by Z1, . . . ,Zd. These coordinates are obtained by com-
puting the scalar inner product xjl = 〈

Xj,Zl〉 and ykl = 〈
Yk ,Zl〉 (l = 1, . . . , d). As the

variables Xj and Yk are assumed to be of unit variance, the inner product is equal to the
correlation between the variables X (or Y ) and Z: xjl = cor(Xj,Zl) and ykl = cor(Yk ,Zl).
Then, for any two variables Xj and Yk , a similarity score can be computed as follows:

Mj
k = 〈xj, yk〉 = (xj)′yk (1)

where 0 ≤ |Mk
j | ≤ 1. The matrixM can be factorized asM = xy′ with x and ymatrices of

order (p × d) and (q × d) respectively. When d = 2,M is represented in the Correlation
Circle by plotting the rows of x and the rows of y as vectors in a 2-dimensional Carte-
sian coordinate system. Therefore, the inner product of the Xj and Yk coordinates is an
approximation of their association score.

Pair-wise variable associations for PLS

For PLS-reg, the association score Mj
k between the variables Xj and Yk can be obtained

from an approximation of their correlation coefficient. Let r the rank of the matrix X,
according to [51], PLS-reg allows for the decomposition of X and Y by:

X = U1(φ1)′ + U2(φ2)′ + · · · + Ur(φr)′ (2)
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Y = U1(ϕ1)′ + U2(ϕ2)′ + · · · + Ur(ϕr)′ + E(r) (3)

where φl and ϕl, are the regression coefficients on the variates U1, . . . ,Ur , and E(r) is
the residual matrix (l = 1, . . . , r). By denoting ul the standard deviation of Ul, using the
orthogonal properties of the variates and the decompositions in (2) and (3), we obtain xjl =
cor(Xj,Ul) = ulφl

j and ykl = cor(Yk ,Ul) = ulϕl
k . Let d < r the number of components

selected to adequately account for the variable association, then for any two variables Xj

and Yk , the similarity score is defined by:

Mj
k = 〈xj, yk〉 =

d∑
l=1

xjly
k
l =

d∑
l=1

u2l φ
l
jϕ

l
k ≈ cor(Xj,Yk) , (4)

where xj = (xj1, . . . , x
j
d)

′ and yk = (yk1, . . . , y
k
d)

′ are the coordinates of the variable Xj and
Yk respectively on the axes defined by U1, . . . ,Ud. When d = 2, a Correlation Circle
representation is obtained by plotting xj and xk as points in a 2-dimensional Cartesian
coordinate system.
For PLS-can, the association scoreMj

k is calculated by substituting ykl = cor(Yk ,Vl) in
(4) for l = 1, . . . , d, as in this case the decomposition of Y is given by:

Y = V 1(ϕ1)′ + V 2(ϕ2)′ + · · · + Vr(ϕr)′ + E(r)

where ϕl (l = 1, . . . , r), are the regression coefficients on the variates V 1, . . . ,Vr . Then,

Mj
k = 〈xj, yk〉 =

d∑
l=1

u2l σ
2
l φl

jϕ
l
k ≈ cor(Xj,Yk) ,

where σ 2
l is the variance of Vl.

Constructing Relevance Networks

Bipartite networks are inferred using the pair-wise similarity matrix M defined in (1)
and (4) for (r)CCA and (s)PLS results respectively. Entry Mj

k in the matrix M represents
the association score between Xj and Yk variables. Then, by setting a user-defined score
threshold, the pairs of variablesXj and Yk with a |Mj

k| value greater than the threshold will
be aggregated in the Relevance Network. By changing this threshold, the user can choose
to include or exclude relationships in the Relevance Network. This option is proposed in
an interactive manner in the mixOmics package [12].
Relevance Networks for (r)CCA assume that the underlying network is fully connected,

i.e. that there is an edge between any pair of X and Y variables. For sPLS-reg and sPLS-
can, Relevance Networks are solely represented for the variables selected in the model. In
this case,Mj

k pair-wise associations are calculated based on the selected variables.

Displaying CIM

CIM or heatmaps were introduced in [11,29] to represent data resulting from gene
expression profiles. This type of representation is based on a hierarchical clustering simul-
taneously operating on the rows and columns of a real-valued similarity matrix M. The
initial matrix is graphically represented as a 2-dimensional coloured image, where each
entry of the matrix is coloured on the basis of its value, and where the rows and columns
are reordered according to a hierarchical clustering. Dendrograms resulting of the clus-
tering are added to the left (or right) side and to the top (or bottom) of the image. With
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(r)CCA, (s)PLS-can and (s)PLS-reg, we chose to display CIM based on the pair-wise
similarity matrixM defined in (1) and in (4).

Endnotes
ahttp://www.math.univ-toulouse.fr/~biostat/mixOmics
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