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Introduction

In order to understand the parameters affecting CRISPR-Cas9 gene editing efficiency, we systematically transfected synthetic 
CRISPR RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA) reagents targeting components of the proteasome into 
a reporter cell line in which knockout of proteasome function results in fluorescence of a ubiquitin-EGFP fusion protein 
that is normally degraded by the proteasome pathway. We evaluated the functionality of > 1100 crRNA sequences in this 
system; using these data, we developed and trained an algorithm to score crRNAs based on how likely they are to produce 
functional knockout of targeted genes. We further tested our algorithm by designing synthetic crRNAs to genes unrelated to 
the proteasome and examined their ability to knock out gene function using additional phenotypic assays. To augment our 
functionality algorithm, we developed an optimized alignment program to perform rapid, flexible, and complete specificity 
analysis of crRNAs, including detection of gapped alignments. We have combined this comprehensive specificity check with 
our functionality algorithm to select and score highly specific and functional crRNAs for any given gene target.

• crRNAs vary in specificity and in efficiency for creating functional gene knockouts

• We used a high-throughput fluorescence assay to develop and train an algorithm to score crRNAs for likelihood of 
producing functional gene knockouts

• We developed an optimized alignment program to perform rapid and complete specificity analysis of crRNAs

• We demonstrate that targets with gaps in either the RNA or DNA strand can be cleaved and are therefore important to 
identify during specificity checking

crRNA functionality is position- and sequence-dependent
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Target/Off-target Sequence PAM

Intended target GGTCATCTGGGAGAAAAGCG TGG

OT1 GGTCCTCTGGGAGAAAAGACG CAG

OT2 GGT-ATCTGGGAGAAAAGCA TGG

OT3 GGTC-TCTGGGAGAAAAG-G AAG
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Conclusions

Figure 1. Recombinant U2OS cell line stably 
expressing a mutant human ubiquitin fused 
to EGFP. A Gly76Val mutation results in an 
uncleavable ubiquitin moiety fused to EGFP, 
which results in constitutive degradation 
of the protein and little detectable EGFP 
fluorescence. (A) Inhibition of proteasome 
activity with chemical treatment  (MG132) 
results in EGFP fluorescence. (B) Schematic 
of a CRISPR-Cas9 experiment using synthetic 
crRNA and tracrRNA reagents. (C) Inhibition 
of proteasome activity with CRISPR-Cas9 or 
siRNAs targeting proteasome components 
results in EGFP fluorescence.

Figure 2. Ubiquitin[G76V]-EGFP U2OS cells stably expressing Cas9 were transfected with 266 synthetic crRNA:tracrRNA 
complexes targeting the coding region of the VCP gene. EGFP fluorescence was measured 72 hours post- transfection; 
an increase in EGFP fluorescence indicates functional knockout of the VCP gene resulting in disruption of proteasome 
function. crRNAs in different exons are indicated by the different colors. The data indicate that crRNAs vary in their ability 
to cause functional gene disruption. 

Figure 3. A training set consisting of 10 
genes and 1115 crRNA target sites was 
used to train our functionality algorithm. 
Features examined include nucleotide 
composition, nearest neighbor effects, PAM 
sequence, position in exons, and distance 
from the start codon. Receiver Operating 
Characteristic (ROC) shows good fit of 
training set data. The ROC measures the 
area under the curve of True Positive Rate vs 
False Positive Rate. The ROC for our test set 
data is 0.78. 

Figure 4. Box plot representation of the functionality of crRNAs targeting BCL2L1, PLK1 or WEE1 as determined by the 
ApoONE homogeneous assay (Promega) 48 hours after transfection. For the box plots, crRNAs were divided into bottom 
half (H1) and top half (H2) based on their functionality score. The medians as well as the distribution of data between the 
lower and upper quartile demonstrate that high-scoring crRNAs have increased functionality.  
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Figure 5. Potential off-target sites in the genome 
for any given crRNA include not just mismatches 
but gaps as well.  Gaps can exist in the crRNA 
strand or in the DNA target strand. Many 
commonly used web-based crRNA specificity 
tools do not fully account for gaps when 
performing alignments.
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Machine learning for algorithm development

Functionality of algorithm-designed crRNAs in other 
assays

Off-target analysis should include gaps

Figure 6. Schematic demonstrating the effect of incomplete alignment during off-target analysis for a crRNA.  

Figure 7. Ubi[G76V]-EGFP U2OS cells stably expressing Cas9 were transfected with 25 nM synthetic crRNA:tracrRNA and 
genomic DNA was isolated 72 hours after transfection. Potential off-target (OT) sites containing mismatches as well as 
gaps in the RNA or the DNA strand were analyzed for off-target cleavage with a mismatch detection assay (using T7EI 
endonuclease). Red nucleotides indicate mismatches, red dashes indicate gaps, and underlined red nucleotides indicate 
insertions relative to the target DNA sequence. The off-targets were identified using the Dharmacon specificity tool and are 
not identified by other common web-based crRNA specificity tools.  

Complete off-target analysis is important for  
crRNA specificity
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Figure 8. Schematic of how 
any given crRNA may differ 
with regard to its specificity 
and functionality. Our 
algorithm balances these two 
attributes to pick the crRNAs 
predicted to have the highest 
specificity and functionality.  


