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Introduction Characterisation and Results
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Fig 1: (a) Schematic representation of the approach for measuring dry mass Fig 3: (a) Measured frequency shift as a function of time. (b) Frequency shift
from a microfluidic device. (b) Drawing of the spray nozzle. (c) Photograph of a of the central 200 bursts in (a). (c) Average frequency shift and corresponding
spray being generated from a microfluidic channel. standard deviation when averaging over consecutive bursts.
The approach in a nutshell [1,2]: - Stable operation during hours
- Spray-dry [3,4] the contents of a microfluidic channel onto the vibrating surface - Linear decrease of the resonance frequency with deposited mass
of an electromechanical sensor (quartz crystal microbalance; QCM) - Measure deposition rates of ug/h
- Decouple the spray to allow the solvents to dry (shutter) - Averaging over 5 spray bursts leads to an accuracy of +/- 0.09 Hz
- Determine the frequency shift of the resonator to quantify the deposited mass
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