
500 1000 1500 2000 2500 3000 3500
0

1e+006

2e+006

3e+006

4e+006

5e+006

6e+006

Time (s)
TIC

600 800 1000 1200 1400
0

2e+007

4e+007

6e+007

8e+007

1e+008

1.2e+008

1.4e+008

1.6e+008

Time (s)
TIC

Application Examples  
 

 
 

 

Instrumentation 
 

 
 
 
 

GC & GC×GC Food/Flavor/Fragrance  
  

 
  

 
 
 

 

GC & GC×GC Metabolomics  
  

 
 
 

 

GC & GC×GC Petroleum  
  

 
 
 

 

Figure 2. Pegasus® 4D GC×GC TOFMS 

Pegasus 4D Capabilities 
• Increased peak capacity over 1D 
• Increased s/n values over 1D 
• Fast acquisition rates (up to 500 spectra/second) 
• Low Maintenance Ion Source 
• Seamless software package (ChromaTOF®) 

Background 
One of the benefits of GCMS as an analytical tool is its ability to provide data 
which can be effectively searched against established libraries. This requires 
resolved or well-defined analytes, or the detection, inter alia, of lower 
abundance analytes which elute under highly abundant analytes. The 
potential for long analytical runs exists as a solution but these often fail due to 
retention mechanisms in GC. An approach which addresses this issue is 
comprehensive two-dimensional gas chromatography (GC×GC) where 
orthogonal selectivity between two phases facilitates separation of coeluting 
analytes. This poster will demonstrate several applications in which single 
dimension gas chromatographic separations fail to provide resolution of 
components of complex mixtures. In many instances, time-of-flight mass 
spectrometry, coupled with mathematical deconvolution algorithms, has been 
successfully utilized to extract pure spectra for coeluting analytes in a complex 
chromatogram. However, there are instances when math alone cannot solve 
these challenging problems. One common example is a so-called perfect 
coelution in which the peaks of two or more analytes apex at the exact same 
retention time. This leads to a mass spectrum composed of more than one 
analyte which cannot be mathematically resolved. Instances such as these 
provide an opportunity for GC×GC to demonstrate the separation power 
needed to successfully isolate and identify components that are often missed 
in one-dimensional GC separations. 
 
Examples will be highlighted for food/flavor/fragrance, metabolomic, and 
petrochemical application markets. The advantage in number of compounds 
detected and overall quality of their mass spectral library similarity scores, as 
compared to one-dimensional methods will be clearly demonstrated.  
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When Single Dimension GC Separations Fail: Exploring Real World Applications 
for Comprehensive Two-Dimensional GC (GC×GC) 
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Figure 1. Visual Representation of Benefits of GC×GC Separation 

Figure 3. Single dimension separation of flavor and fragrance compounds in a pet food 
sample. Expanded view shows a region of the chromatogram where only one out of three 
analytes was successfully identified. In this example, deconvolution alone was unable to 
resolve all three analytes present in this region of the chromatogram. The GC×GC 
separation of the same sample is demonstrated in Figure 4 below. 

Figure 6. GC×GC separation of compounds present in derivatized extracts from 
NIST human plasma. The increased peak capacity led to effective separation 
and identification of analytes that were simply missed using a single dimension 
separation. The expanded view shows the power of the second dimension 
separation and its ability to obtain high quality spectral matches to 
commercially available libraries as a result.  

Figure 8. GC×GC separation of compounds present in African Crude Oil. The increased 
peak capacity led to effective separation and identification of analytes that were not 
confidently identified in a single dimension separation. The expanded view shows the 
power of the second dimension separation and its ability to obtain high quality 
spectral matches to commercially available libraries as a result. The structured nature 
of GC×GC chromatograms also aid in identification of compound classes since they 
tend to align in distinct bands in the two-dimensional display. In this example, the 
cryofocusing effects of thermal modulation significantly enhanced the signal-to-noise 
ratio of the example analytes, which also improved the ability to detect and identify 
them with added confidence.  

Figure 4. GC×GC separation of flavor and fragrance compounds in a pet food 
sample. The increased peak capacity led to effective separation and 
identification of analytes that were not identified effectively using a single 
dimension separation. 

Figure 5. Single dimension separation of compounds present in derivatized extracts 
from NIST human plasma. Expanded view shows a region of the chromatogram where 
only one out of three analytes was successfully identified. In this example, 
deconvolution alone was unable to resolve all three analytes present in this region of 
the chromatogram. The effectiveness of a GC×GC separation of the same sample is 
demonstrated in Figure 6 below. 

Figure 7. Single dimension separation of compounds present in African Crude Oil. 
Expanded view shows a region of the chromatogram where none of the analytes were 
confidently identified. In this example, deconvolution alone was unable to resolve all three 
analytes present in this region of the chromatogram. The power of a GC×GC separation of 
the same sample is demonstrated in Figure 8 below. 

Table I. The table below effectively summarizes a significant advantage of GC×GC over 
single dimension GC in terms of a demonstrable ability to discover more about what’s in 
your food/flavor/fragrance sample. GC×GC can play a major role in aroma and flavor 
characterization research in which key compounds could be misidentified or missed entirely.  

Table II. The table below effectively summarizes a significant advantage of GC×GC over single 
dimension GC in terms of a demonstrable ability to discover more metabolites in a given study. 
This is of paramount importance when attempting to identify important biochemical pathways. 

Table III. The table below effectively summarizes a substantial advantage of GC×GC over 
single dimension GC in terms of a more complete characterization of petroleum samples.  

× × × 


