

Simultaneous multi-determination and transfer of eight pesticide residues from green tea leaves to infusion using gas chromatography

Sung-Woo Kim^a, Soon-Kil Cho^b, A. M. Abd El-Aty^{a,c,*}, Md. Musfiqur Rahman^a, Jeong-Heui Choi^a, Jae-Han Shim^{a,*}

^aNatural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea ^bNational Agricultural Products Quality Management Service Jeonnam Provincial Office, Gwangju, Republic of Korea ^cDepartment of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt

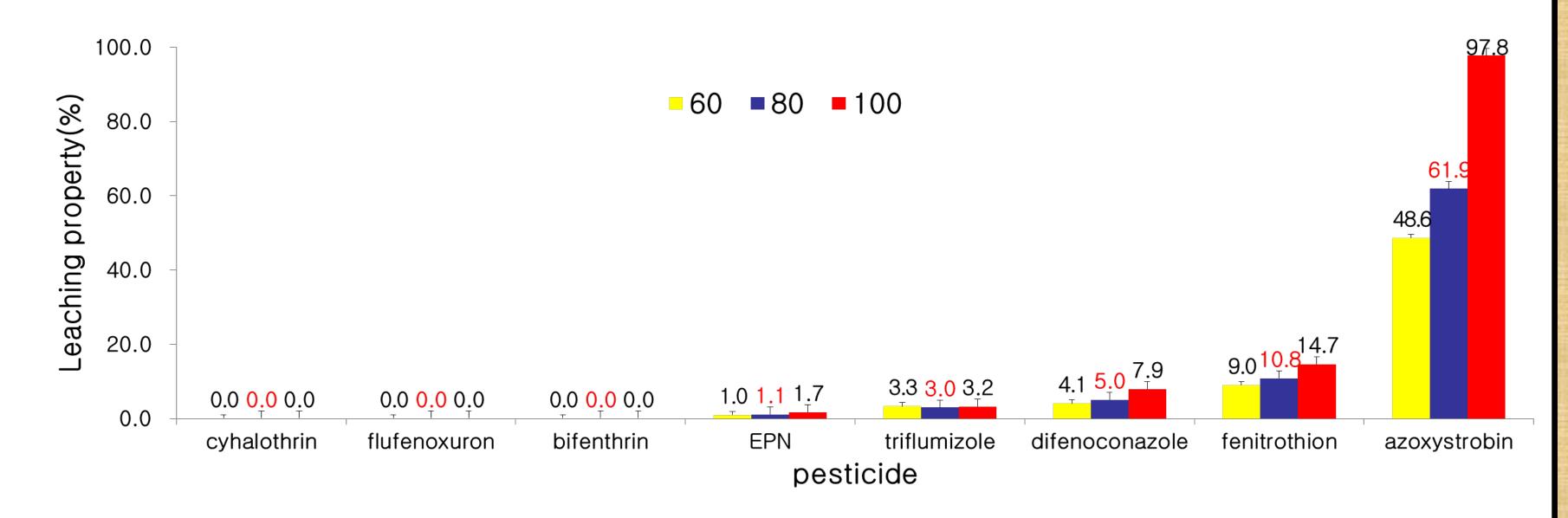
A method for determining eight pesticide (cyhalothrin, flufenoxuron, fenitrothion, EPN, bifenthrin, difenoconazole, triflumizole, and azoxystrobin) residues in made green tea as well as a tea infusion (under various brewing water temperatures; 60, 80, and 100°C) using gas chromatography (GC) micro-electron capture detector (µECD) was developed and validated. The extraction method adopted the relatively commonly used approach of solid sample hydrated before being extracted through salting out with acetonitrile followed by a cleanup procedure. The analytes were confirmed using GC-coupled to tandem mass spectrometry (GC/MS/MS) with a triple quadrupole. The linearity of the calibration curves yielded determination coefficients $(R^2) > 0.995$. Recoveries were carried out using blank samples at two levels. The results demonstrated that all pesticides were recovered within the range of 77–116% with a relative standard deviation (RSD) \leq 14%. The quantification limits of 0.015 to 0.03 mg/kg were lower than the maximum residue limits (MRLs) set by the Korea Food and Drug Administration (KFDA) for all analytes (0.05–10 mg/kg). The infusion study indicated that cyhalothrin, flufenoxuron, and bifenthrin did not infuse into the tea brew from the made tea. Increases in brewing time resulted in increased transfer of azoxystrobin, fenitrothion, and difenoconazole from the made tea to the brew; however, this was not the case with triflumizole or EPN. We conclude that transfer of pesticides appeared to be dependent on their water solubilities and drinking a cup of tea is recommended to be at a water temperature of 60°C.

Keywords: Pesticides; leaching; green tea; infusion; brewing; roasting; dried leaves

Introduction and objectives

- Tea is the most consumed drink in the world after water. Green tea is a 'nonfermented' tea that contains more catechins than black tea and could contribute to its strong antioxidant effects *in vitro* and *in vivo*. Additionally, green tea contents of certain minerals and vitamins increases the potential for antioxidant activity.
- Eight pesticides (cyhalothrin, flufenoxuron, fenitrothion, EPN, bifenthrin, difenoconazole, triflumizole, and azoxystrobin) with different physicochemical properties (volatility and polarity) were selected to evaluate the percent transfer of pesticide residue from dried (made) tea to infusion, as tea is subjected to an infusion process prior to human consumption.

MATERIALS and METHODS


- **♦** Standards: flufenoxuron, triflumizole, fenitrothion, EPN, bifenthrin, cyhalothrin, difenoconazole, and azoxystrobin
- ◆ *n*-hexane, acetone: Merck HPLC grade (Germany)
- ◆ Nitrogen evaporator: Interface HyperVap HV-200

Sample	
Preparation	

Detector: Electron capture detector (ECD) Temperature: Inlet (250°C), Det (320°C)

GC analytical conditions (Agilent 6890 Series)

Extraction

Analytical conditions of GC/MS/MS (Agilent 6890 Series)

Items	Conditions
A nalytical column	5% phenyl methyl siloxane
Analytical column	$(30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \mu\text{m})$
Transfer line temperature	280°C
Source temperature	320°C
Quadrupole temperature	Q1 and Q2 = 150°C

Compounds	M·W	Precursor	Produc	t ion	Dwell	C	·С
Elufonomian	100 77	304.2	178.8	214	15	30	20
Flufenoxuron	488.77	125.6	98	51	15	10	40

170.1

179

109

78.9

110.1

141

165.1

165.1

127.1

115.1

202.2

173.1

329.2

360.1

205.3

277.2

277

125

157

169

180

166

181

197

265

323

344.1

388.1

345.75

277.23

323.3

422.88

449.85

406.26

403.4

Triflumizole

Fenitrothion

EPN

Bifenthrin

Cyhalothrin

Difenoconazole

Azoxystrobin

186

205.9

79

62

77

51

179

115.2

115.1

141.1

139.2

265

172.1

299.9

15

15

15

15

15

15

15

15

15

15

15

15

15

15

30

20

30

10

20

20

30

30

20

40

20

10

20

20

40

10

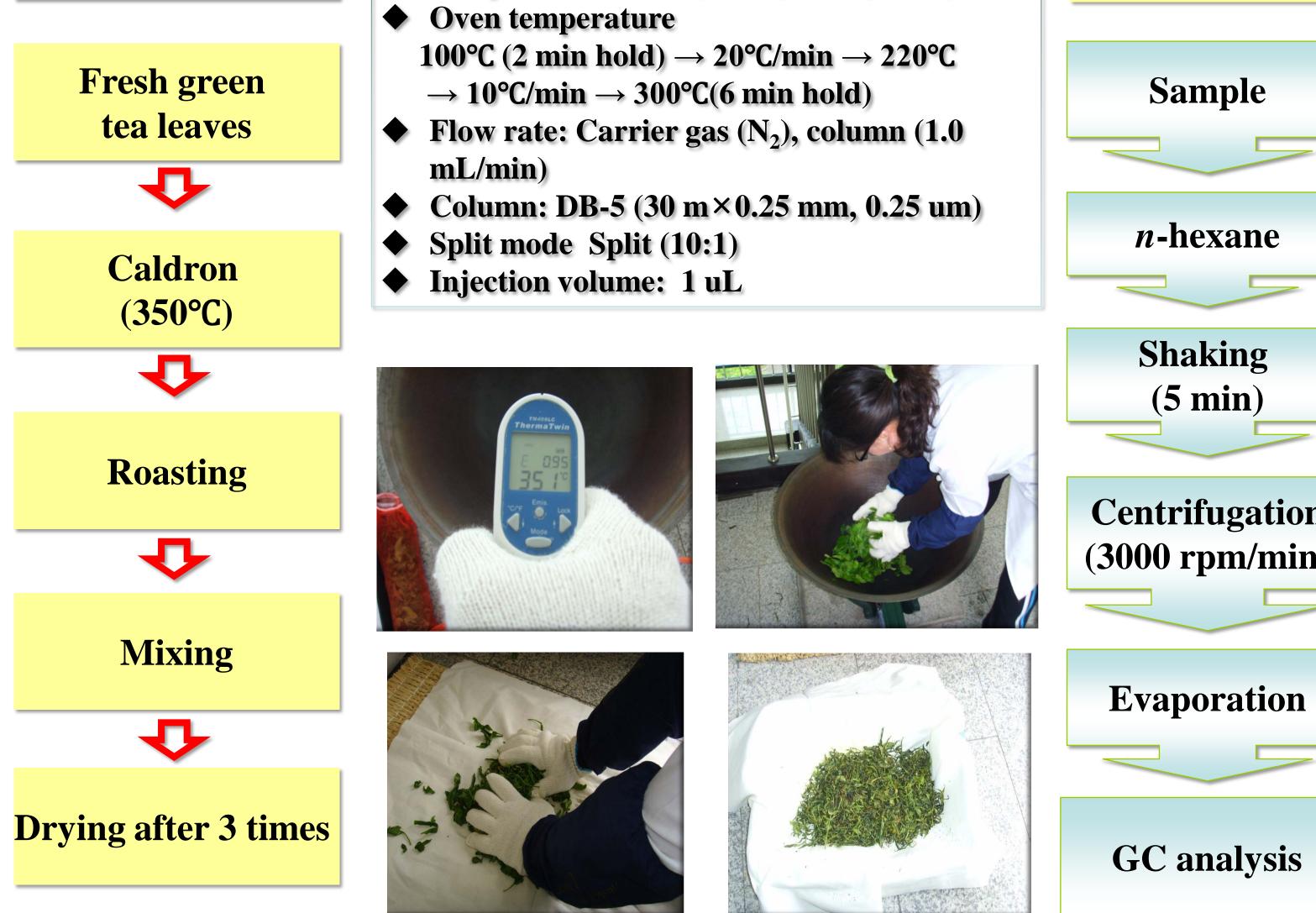
30

40

20

40

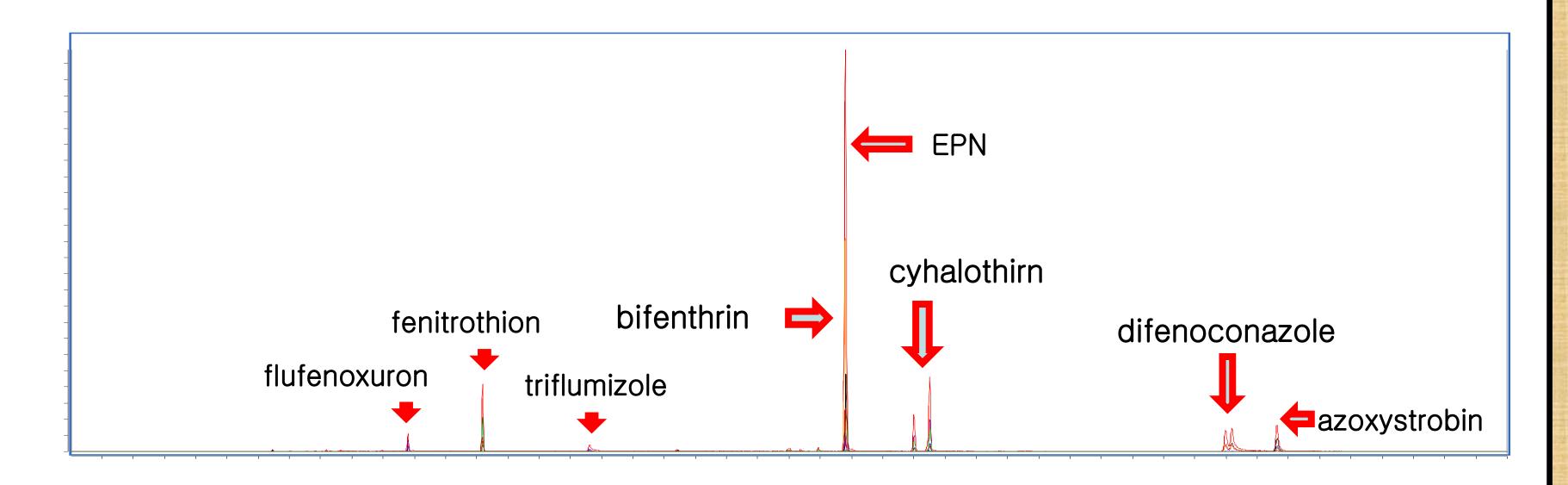
30


20

40

20

40


30

Sample *n*-hexane

(5 min)Centrifugation (**3000 rpm/min**)

Chromatogram of 8 pesticides

RESULTS and DISCUSSION

Recovery of 8 pesticides

Pesticide	Recovery (%)					
	Fortification (mg/kg)	Average ± C.V(%)	R ²	LOD (mg/kg)		
	0.1	106 ± 3.5	0.007	0.010		
Flufenoxuron	0.5	89±8.5	0.996	0.010		
Triflumizole	0.1	103±5.6	0.000	0.005		
	0.5	86±8.2	0.998			
Fenitrothion	0.1	116±3.1		0.005		
	0.5	95±9.6	0.996			
EPN	0.1	98±6.1	0.998	0.0		
EPN	0.5	79±1.0	0.998			
D'f	0.1	89±3.1	0.005			
Bifenthrin	0.5	77 ± 10.4	0.995	0.005		
	0.1	94±1.2				
Cyhalothrin	0.5	81±8.1	0.998	0.005		
Difenoconazole	0.1	89±4.9	0.007			
	0.5	87 ± 10.8	0.997	0.005		
	0.1	91±4.7				
Azoxystrobin	0.5	84±9.7	0.997	0.005		

C.V. (Coefficient of variation, %) = standard deviation(SD)/average × 100

CONCLUSIONS

- \clubsuit The recovery rates of pesticides in green tea extracts were in the range of 89 ~ 116% at fortification level of 0.1 mg/kg and 77 ~ 95 at fortification level of 0.5 mg/kg.
- ***** Cyhalothrin, flufenoxuron, and bifenthrin were not extracted, and extraction efficiency decreased in the following order: EPN > triflumizole > difenoconazole > fenitrothion > azoxystrobin.
- ***** EPN and triflumizole were extracted without the effect of brewing water temperature. Extraction efficiency of difenoconazole, fenitrothion, and azoxystrobin were increased when the temperature become high. Especially, 97.3% of azoxystrobin was extracted with the temperature of 100°C.
- ✤ The result shows that the brewing efficiency of pesticides from green tea was different according to solubility in water, and physicochemical properties.

Homepage: http://altair.chonnam.ac.kr/~jhshim E-mail : jhshim@jnu.ac.kr