


# Analysis of overall success of robotic crystallization

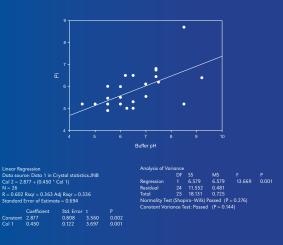
Ivan Ivanovic, Heather Baker, Shaun Lott and Edward N. Baker School of Biological Science, The University of Auckland, New Zealand

### **Introduction**

The Robotic Crystallization Facility at the University of Auckland has three main instruments: Cartesian "Honey bee", Multi Probe and Plate Imager. Crystallization trials have been performed employing the 96-well Intelly plates using seven customised "Robot screens" with a total of 672 different crystallization conditions. These screens represent a combination of published and commercial screens and include Top 67 (1), Sparse matrix 1 & 2, PEG/Ion, PEG Screen, Precipitant synergy screen (2), MPD screen, Ammonium sulphate screen, Footprint I, Clear strategy screen and the Morpheus screen. Small crystallization drops, 100nL+100 nL, allow a full trial of 672 conditions to be set up with only 70  $\mu$ L of protein sample.

#### **Precipitant of choice**

PEG 3350 was the precipitant for 32% of these 62 protein crystals making it the single most successful crystallisation agent. PEG 3350 is present in 14% of all screen conditions. However, medium sized PEGs (MW 2000–6000), including 3350, had overall success rates of 54%.


| Precipitant              | Number of crystals | % of all crystallisation: |
|--------------------------|--------------------|---------------------------|
| 2 precipitants (synergy) | 9                  | 15.5                      |
| High Salts               | 10                 | 7.2                       |
| Alcohols                 | 3                  | 5.1                       |
| PEG 3350                 | 18                 | 31.0                      |
| Total PEGs               | 36                 | 62.0                      |

# **Overall success**

In the past six years the Auckland University Robotic Protein Crystallization facility has set up more than 10,000 crystallisation drops on a total of about 140 different proteins. Of these proteins, 62 have been crystallized with a quality suitable for X-ray diffraction, their structures determined and published. This represents an overall success rate of 44%. Interestingly, proteins derived from Mycobacterium tuberculosis (TB) had a success rate of only 35% compared to the 50% success rate of all other proteins. On a per-drop basis, about 300 crystallization experiments have been successful, representing an overall success rate of 3%.

# Correlation of protein pl and buffer pH

Buffer pH has been compared with calculated pl for 26 successfully crystallised proteins. The correlation coefficient is 0.602 and P value 0.00113 which shows a significant relationship between the two variables.



#### Advantages

- > Wide range of screens set up immediately after the protein has been purified.
- > Uses very small volumes.
- > Very good reproducibility.
- > Improved crystallization success rate.

#### Disadvantages

- > Setting up cost and ongoing maintenance.
- > Difficulty mounting small crystals from concave wells.
- Tiring inspections of many drops. Solution is a robotic plate inspection system.





 Page R. et al. (2003) Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermataga maritima proteome. *Acta arystallagraphica*, D59, 1028-1037.
Shotzad M. et al. (2003) Ehoning Protein Crystallization through Precipitant Syneary, Structure, Vol. 11, 1061-1070.
Gorrec F. (2009) The MORPHEUS protein crystallization screen, *Apd Cryst.*, Vol.42, 1035-1042.