The use of the IV microtracer technique to drive formulation optimisation

Vanessa Zann¹, Paul Dickinson¹, Wang Wang Lee¹, George Kirk¹, Owen Jones¹, Andy Gray¹, Davindera Singh Sanghera², Mark Seymour², Jo Collier³, Lloyd Stevens³, Julie Dent⁴ 1 = AstraZeneca, 2 = Xceleron Ltd, 3 = Quotient Clinical Limited, 4 = Arrow Therapeutics

Strategy – Use IV microtracer technique to de risk compounds with PK issues and drive formulation development

For compounds where exposure/pharmacokinetics (PK) is thought to be a risk, determine intravenous PK parameters and confirm absolute bioavailability (% F) in man as soon as possible using the IV microtracer technique, 3 examples are discussed.

- Drug X Exposure assumed to be limited by solubility and therefore an enhanced formulation will be required - is a product viable?
- Drug Y Exposure thought to be low and $t_{1/2}$ predictions uncertain is a once a day (UID) product viable?
- Drug Z Lead compound carries significant PK risk, will PK be a significant risk for drug Z (back up compound) progressing?

Metholodoay - IV Microtracer Technique

The IV microtracer technique involves giving a IV ¹⁴C-microtracer concurrently with an oral therapeutic dose in a single period study, avoiding the concerns of dose dependant kinetic issues. Accelerator mass spectrometry (AMS) is used to analyse the low concentrations of ¹⁴C parent drug in plasma arising from the IV microtracer dose. AMS is an extremely sensitive quantitative analytical method for the detection of ¹⁴C. Coupled with a chromatographic separation step it can be used to quantify levels of 14C-labelled analytes in biological samples. The IV microtracer technique offers the ability to generate absolute bioavailability (% F) data without developing a conventional IV formulation and without an intravenous toxicity safety package (Lappin and Stevens 2008). The development and manufacture of the IV formulations and the clinical studies for drugs X, Y and Z were conducted at Quotient Clinical Ltd (Nottingham, UK). HPLC AMS analysis of samples for all studies was conducted by Xceleron Ltd (York, UK). Ethics approval for the study for drug X was from Capenhurst independent ethics committee (Manchester, UK) and for drugs Y and Z was from Yorkshire independent ethics committee (Leeds, UK). Informed consent was given by all subjects prior to study initiation.

Drug X

- Tentative BCS Class IV compound, amorphous free base.
- Apparent permeability (P_{ann}) in Caco-2 cells was moderate (P_{ann} 1.7 x 10⁻⁶ cm/s at 10 uM).
- Solubility in human intestinal fluid (HIF) was very low (~ 2 µg/ml), however there was evidence of increased solubility in the fed state, and other biorelevant media (e.g. Mullertz media = 37 µg/ml).
- Predicted human fraction absorbed (Fabs) using an AZ in silico CAT model was 2 % for a 250 mg dose UID, , with exposure predicted to be strongly solubility limited, maximum absorbable dose (MAD) = 7 mg.
- Phase I formulation was a suspension of amorphous free base in HPMC and orange juice. Exposure in man was poor and it was estimated that a 5-10 fold increase is needed for a successful product
- · Proposed lipid based formulation for future development.

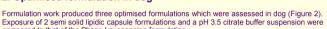
Methodology

- 1. Determine % F in man using IV microtracer technique.
- 2. Assess enhanced formulation options in dog.
- 3. Using modelling tools (PBPK and CAT modelling software) assess if a 5-10 fold increase in exposure is achievable

References

1. Lappin and Stevens, Expert Opinion on Drug Metabolism and Toxicology, 2008 4(8): 1021-1033

QUOTIENT BIORESEARCH



An open-label study was conducted in 6 healthy male volunteers. Each subject received a single oral dose of 250 mg drug X (suspension in orange juice), then at t_{max} (after 1 hour and 45 mins) received a single IV infusion over 15 mins of 20 µg (< 270 nCi) ¹⁴C drug X. Blood samples were taken at various time points following oral and IV administration (see Figure 1 for plasma profiles). The nonradiolabelled drug was analysed by liguid chromatography/mass spectrometry (LC/MS), with the 14C drug X analysed by HPLC AMS.

Results

- Average % F was 12.7 + 2.17 (n = 5), clearance (CI) calculated from the IV dose was low at 1.8 ml min-1 kg-1 (8 % LBF) indicating that the poor % F was low due to poor absorption and not high CL Fabs was calculated to be approx 15 %.
- Potential to increase exposure by up to 8 fold through solubility enhancement.
- Variability in C_{max} and AUC was low, and $t_{1/2}$ similar, following both IV and oral administration.

2. Optimised formulation in dog

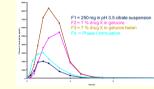
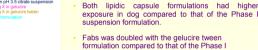



Figure 2. Geomean plasma profiles of drug X in dog from various formulation

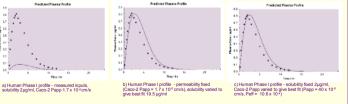
compared to that of the Phase I suspension formulation. Results

formulation compared to that of the Phase I formulation, 44% compared to 21 % respectively.

Figure 1. Individual plasma profiles of drug X in man

Exposure of the gelucire tween formulation (F3) in man was then predicted using modelling approaches

3. Modelling - Is a 5-10 fold increase in exposure feasible with the lipid based formulation in man?


AZ in silico CAT (GI-Sim) software was used to develop a compound specific/tuned model to predict if the required increase in exposure was viable. The human phase I data was fitted using this model and then applied pre-clinically. In vitro measured HIF solubility was used for the initial modelling. PK profiles for the Phase I formulation were modelled to give best fit by fixing one measured parameter (e.g. permeability or solubility) and then optimising the none fixed parameter. The IV microtracer study provided the IV parameters which were essential to the successful in silico modelling.

AZ In house CAT model (GI-Sim) profiles - squares represent mean plasma conc following oral dose 250 mg, solid line predicted plasma concentrations.

Human Phase I PK profiles

Dog Phase I PK profiles

Restored Research of Long

Results

Modelling suggests that solubility is increased in vivo compared to measured values in HIF. (supported by evidence in biorelevant media) Pef value used to fit human data is very high and Peff to fit dog data is completely unrealistic. For predictions to man assume solubility higher than measured in HIF

Results – Lipidic formulation in dog

- To get a good fit (regardless of permeability used) solubility needs to be increased $\sim 3x$, possible explanations for this are;
- Natural solubility of X in lipid/intestinal fluid mix
- Lipid excipients induces gall bladder emptying and increases bile acid/phospholipid conc in small intestine that increases solubilisation
- Digestion of lipid excipients creates a environment capable of solubilisation
- Combination of the above

Could not fix tmax (faster input required), gastric emptying time extended to 45 min to give best fit - would lipid content increase gastric emptying in dogs? Will this occur in humans?

Simulation of Lipidic formulation exposure in man

Caco-2 permeability value of 1.7 x 10⁻⁶ cm/s used.

Presidenti Classes Profile

Time / Inc

f) Dog gelucire tween formulation (F3) profile – permea fixed (Caco-2 Papp 1.7 x 10° cm/s) solubility 140 µg/n pastric emptving increased to 45 min to predict tmax

- Modelling was performed at either 3 x the solubility (60 µg/ml) determined to give best fit in humans for the phase 1 formulation, or the absolute in vivo lipidic solubility determined via modelling from dog 140 µa/ml.
- Gastric emptying time was kept standard (15 min) or increased to 45 min

Table 1. Predicted % human Fabs for 250 mg lipidic formulation

		Increased Gastric emptying time (45 min)
60 µg/ml	38	45
140 µg/ml	64	70

PBPK simulations were used to predict the PK profiles in man using the lipidic formulation. % Fabs was predicted to be 55 % using this model, which is within the range predicted using the CAT model

Conclusion

- IV microtracer technique confirmed that % F of drug X was low due to poor absorption (Fabs 15 %)
- A 5-10 fold increase in exposure from the Phase I formulation (% 15 Fabs) was required in man. modelling (using increased intestinal solubility parameters and gastric emptying) has predicted < 5 fold increase
- Modelling indicated that a commercial formulation to provide the required exposure using an acceptable capsule load was not viable
- Drug X progression STOPPED

Other examples of the use of the IV microtracer technique

Drug Y – back up candidate drug (CD), UID required, risk of short $t_{1/2}$ due to discrepancies in in vitro CI predictions, can formulation be used to achieve a UID if required. Low exposure also a risk.

Outcome - limited duration of exposure due to short tup (1.55 hours), UID (conventional or modified release) not possible, therefore drug Y stopped.

4 6 8 Time (b) Figure 3. Mean plasma profiles following oral and IV microtracer dose of drug Y

Drug Z - back up CD, lead compound carried significant PK risk, however drug Z was predicted to have better PK. Absolute bioavailability (% F) data was required early in clinical development to support this.

Outcome - % F 92 (geomean), t_{1/2} 11.1 hours, PK superior to lead compound, de risked drug Z for development.

Summary

The IV microtracer technique can be used in early clinical development to provide absolute bioavailability data and robust intravenous PK parameters), to indentify if absorption is responsible for poor exposure and thus indicate if formulation options can be used to increase exposure, and to de risk compounds which carry a PK liability.

Territe e) Dog Phase I profile – solubility fixed 2 µg/ml, dog Peff 200 x 10⁻⁴ cm/s (max value allowable) (Caco-2 Papp = 1.7 x 10⁻⁶ cm/s), solubility varied to give best fit 55 µg/ml