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Introduction Methods

Xconvert program included in Xcalibur was used to
convert the LC-ESI-MS Xcalibur (*.raw) files to netCDF
(*.cdf) format. Automatic peak finding, deconvolution, and
alignment were performed using XCMS running on the open
statistical platform R or MarkerView 1.1 (Applied
Biosystems/MDS Sciex, Concord, Ontario, Canada). GC–
TOF–MS data were pre-processed and annotated by BinBase1.

Preliminary data exploration was accomplished using
unsupervised methods such as PCA and clustering. PCA
analysis used R package pcaMethods in Bioconductor project.
Cluster analysis of the PCA scores was performed using
partitioning methods such as K-means using the function
kmeans() in R package stats, hierarchical agglomerative
methods such as Ward's method using the function hclust() in
R package stats, and multiscale bootstrap resampling using R
package pvclust, and model-based clustering approach using
R package mclust which assumes a variety of data models and
applying maximum likelihood estimation and Bayes criteria to
identify the most likely model and number of clusters.

Genetic Algorithms (GA) are a class of algorithms based
on the principle of biological evolution, suitable for finding
approximate solutions to global optimization problems when
there is a very large pool of possible solutions. GA procedure
incorporates operators such as biological inheritance,
mutation, selection, and recombination on chromosomes,
initial sets of candidate solutions8. Starting from a randomly
generated set of chromosomes and a criteria function for
evaluating the fitness of an individual chromosome, GA
procedure repeatedly selects the fittest candidate solutions in
each generation and lets them reproduce and keep the
population size constant. This process stops when the goal
fitness is achieved. Goal fitness is defined as the average
reachable fitness in a reasonable amount of generations.
Feature selection using GA procedure and further
classification were performed using R package GALGO8.

All calculations were performed in an R integrated
development environment (IDE) RKWard under Kubuntu
7.10. The commercial MarkerView 1.1 was used for
validation running on Windows XP.

Research on metabolic profiling samples
of the high complexity, biological variance,
and large compositional dynamic range
poses many challenges for components
separation, detection, and data analysis1.
Complex and large datasets generated with
techniques such as hydrophilic interaction
chromatography (HILIC–LC–ESI–MS),
reversed-phase liquid chromatography (RP–
LC–ESI–MS), and gas chromatography
(GC–TOF–MS) all coupled to mass
spectrometry require modern computational
tools and robust data mining technologies2, 3.

Biomarker discovery requires finding
small subset of the most prominent
metabolites that could be extended from
training set to testing set, validated and
further used for discrimination studies
and/or diagnostics of the whole population
of the particular organism. Feature selection
is a technique commonly used in machine
learning to select a subset of relevant feature
for building robust learning models4.
Univariate feature selection methods test
one metabolite at a time for its ability to
discriminate a dependent variable, such as
genotype differences in the current case.
Then top most significant metabolites are
used to develop a statistical model.
Multivariate methods take into consideration
the synergy among metabolites. Based on
different subsets of metabolites, many
possible models are evaluated and the most
predictive model is identified and selected5,

6. It was reported7 that Markov chain Monte
Carlo and Genetic Algorithms (GA) are two
promising multivariate approaches in
analysis of the LC–ESI–MS metabolomics
datasets.

In the present study, three independent
and complementary analytical techniques
for metabolic profiling of six investigated
genotypes of one-year-old Pinus taeda L.
were applied. Unsupervised methods, such
as principle component analysis (PCA) and
clustering, and supervised methods, such as
classification were used for data mining.
GA was probed for selection of the smallest
subsets of potentially discriminative
classifiers.

Conclusion
The present study demonstrated that combination of the comprehensive metabolic

profiling utilizing three complementary analytical methods for MS data acquisition and GA
technique for feature selection presenting intriguing avenue for finding and exploration small
subsets of strong classifiers. Data pre-processing is extremely important for further analysis.
Parameters optimization is shown to be essential for avoiding over fitting tendency in
multivariate approach. Preliminary results of this study are promising. Developed methods
will be further validated and applied for large-scale metabolomic studies involving different
organisms. Generation of small subsets of classifiers with high discriminatory ability is
particular attractive for diagnostic test developments.

Results and Discussion
Unsupervised Analysis without Feature Selection: PCA score 3D plot by pcaMethod showed
that group 1and 2 formed clusters and were well separated from the other groups, whereas the
rest of the groups could not significantly differentiate from each other (Figure 1). pvclust and
mclust are good choices for clustering if grouping information is not available.
Feature Selection Using GA: It was found, that 10 most frequent classifiers in HILIC, RP
LC–ESI–MS, and GC–TOF–MS data occurred at least 100 times in 2000 models (Table 1). In
parallel GA feature selection was applied to peak tables generated with MarkerView 1.1
(Table 2) for LC/MS data. One can find different candidates on the lists suggesting
dependence on peak picking algorithms used.
Classification and Prediction after Feature Selection: The respective fittest GA model
predicted with a specificity range of 0.85 to 0.98 and a sensitivity range of 0.36 to 1.0 for GC–
TOF–MS data (Figure 2), a specificity range of 0.87 to 0.99 and a sensitivity range of 0.66 to
0.94 for HILIC–LC–ESI–MS data, and a specificity range of 0.88 to 1.0 and a sensitivity
range of 0.74 to 0.96 for RP–LC–ESI–MS data. In parallel we applied MarkerView 1.1 for
PCA analysis with GA selected classifiers (Figure 3).
Metabolic Networking among GA Selected Features: A major difference between GA and
other machine learning approaches is its ability to determine relationship among feature
components, providing valuable information about metabolite interactions, metabolic
pathways, and clinical diagnosis. Therefore, a highly positive or negative correlated group of
feature components was preferred for a model. The metabolite network of GC–TOF–MS data
illustrated that many saccharides are interwoven heavily, indicating that carbohydrates
metabolic pathways involved (Figure 4).

Figure 1. 3D PCA score plots of the
GC–TOF–MS data. Groups were
color-coded as: 1-black, 2-red, 3-
green, 4-blue, 5-cyan, 6-pink.
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Figure 2. Heatmap plot of GC–
TOF–MS data using the fittest GA
model.

Figure 3. PCA score plots
generated with the only GA
selected classifiers of the GC–
TOF–MS data.

Figure 4. Network interactions
among feature components of
GC–TOF–MS data. The line
thickness represents the
dependency strength. Top
components were color-coded:
black, red, green, blue, cyan, pink,
yellow, and gray.

Table 1. Top 10 classifiers
(XCMS peak list)
Rank ions m/z (Dalton)/RT (sec)

frequency

HILIC-LC–ESI–MS
1 negative 549/220 794
2 positive 1048/372 690
3 positive 405/205 621
4 positive 875/96 478
5 negative 1003/385 440
6 negative 747/487 347
7 negative 743/162 307
8 positive 995/325 307
9 positive 709/457 269
10 negative 832/923 252

RP-LC–ESI–MS
1 positive 1341/1375 716
2 negative 508/609 457
3 positive 1237/1460 397
4 positive 324/533 370
5 negative 1005/965 358
6 positive 304/549 303
7 negative 741/711 247
8 positive 305/547 196
9 negative 661/965 156
10 negative 153/139 148

Table 2. Top 10 classifiers
(MarkerView peak list)

Rank ions m/z (Dalton)/RT (min)
frequency

HILIC-LC–ESI–MS
1 negative 827/14.9 151
2 negative 291/9.7 140
3 negative 947/19.5 101
4 positive 828/14.9 95
5 positive 649/12.2 86
6 negative 355/14 82
7 positive 188/9.5 80
8 negative 847/13.5 78
9 negative 289/11.5 76
10                      negative 264/5.5 72

RP-LC–ESI–MS
1 positive 1261/24.5 232
2 positive 257/13.4 225
3 positive 1303/22.7 166
4 negative 744/7.8 156
5 positive 738/6.5 147
6 negative 315/12.9 135
7 positive 313/22.3 99
8 negative 785/11.3 93
9 negative 319/16.1 85
10 negative 530/24.7 71
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