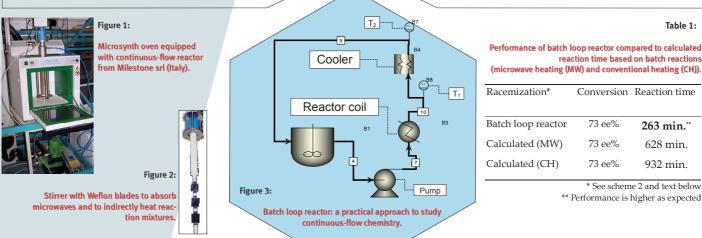


SCALABILITY OF HETEROGENEOUS MW-HEATED PROCESSES


Mark H.C.L. Dressen, Bastiaan H. P. van de Kruijs, Jan Meuldijk, Jef A. J. M. Vekemans, Lumbertus A. Hulshof Den Dolech 2, 5612 AZ Eindhoven, The Netherlands; DSM Research, P.O. box 18, 6160 MD, Geleen, The Netherlands

Objective

Our research investigates how microwave (MW) heating can contribute to process intensification. The key issue is transformation of lab procedures to a MW oven in a fume hood setup (figures 1 and 2).

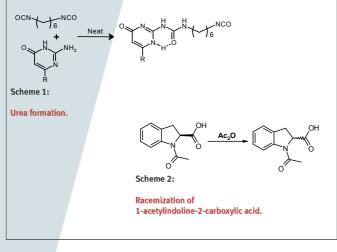
Microwave-assisted Heterogeneous Reactions

High concentrations or heterogeneous conditions may improve the space-time yields or productivity. Our setup (figure 3) offers apart from insights into the MW effect also an understanding of mass-, heat transfer and energy efficiency under MW heating conditions.

Batch loop reactor 73 ee% 263 min.** Calculated (MW) 73 ee% 628 min. Calculated (CH) 73 ee% 932 min

(microwave heating (MW) and conventional heating (CH)).

* See scheme 2 and text below ** Performance is higher as expected


reaction time based on batch reactions

Conversion Reaction time

Table 1:

Vanishing MW Effects: **Role of Heterogeneity**

Previously we reported rate-enhancing MW effects in particular cases compared to conventional heating [1]. The examples in schemes 1 and 2 demonstrate that these MW effects may vanish by decreasing the heterogeneity of the system. The basic mechanism of rate-enhancement - crucial for scaling out these heterogeneous chemical processes- is being studied.

[1] Dressen, M.H.C.L. et al, Org. Process Res. Dev. 2007, 11, 865.

Reactor Performance

Given the limited penetration depth of microwaves, scaling out preferentially relies on continuous-flow equipment that allows to combine all demanding factors for a robust process.

The conversion-time profile in the batch loop reactor can be estimated from kinetic data of the batch process on a small scale (table 1). The batch loop reactor behaves as a n-number of CSTR's (Continuous Stirred Tank Reactor). This number is based on residence time distributions, which are correlated with the behavior of the reactor coil (see figure 4). Figure 4:

Increasing the productivity of the batch loop reactor is achieved by parallel circuits.

In Summary...

- Combination of flow chemistry and microwave heating offers a unique opportunity to scale out heterogeneous microwaveassisted organic reactions.
- The feasibility of this setup is depending on the presence of a microwave effect, safety issues and energy efficiency.

Contact: L.A.Hulshof@tue.nl

/department of chemical engineering and chemistry