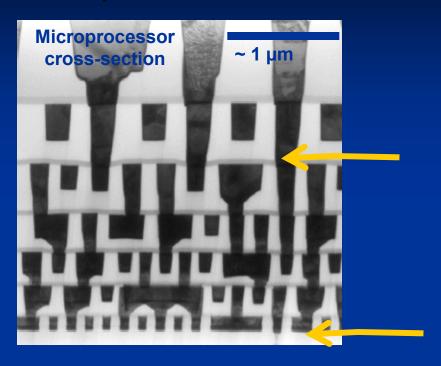
Study of CO₂ Adsorption on Amorphous HfO₂ using PTA on the Netzsch 449

Sergey Ushakov and Alexandra Navrotsky Thermochemistry Facility UC Davis

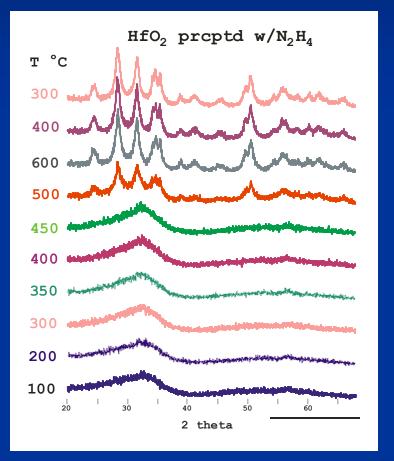


This work is part of the project on themochemistry of alternative gate dielectrics funded by Motorola and

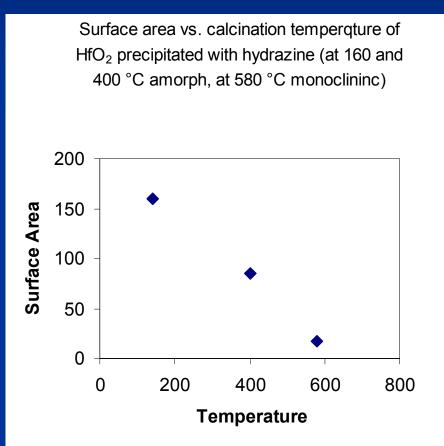
UC-SMART program.

Quest for SiO₂ replacement in the next generations of the microprocessors:

by "low-K" oxide - to prevent cross-talk between back-side interconnects


by "high-K" gate oxide - to switch transistors faster

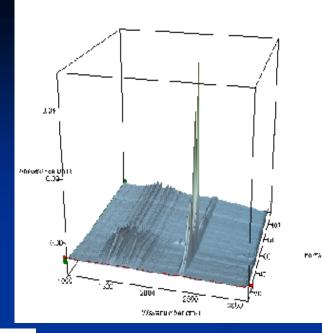
HfO₂ is a prospective high-k replacement for SiO₂ for future integrated circuits. We study energetic of amorphous and nanocrystalline hafnium oxide by high temperature oxide melt solution calorimetry to establish critical sizes where phase stability switches by surface energy terms.


<u>Experimental</u>

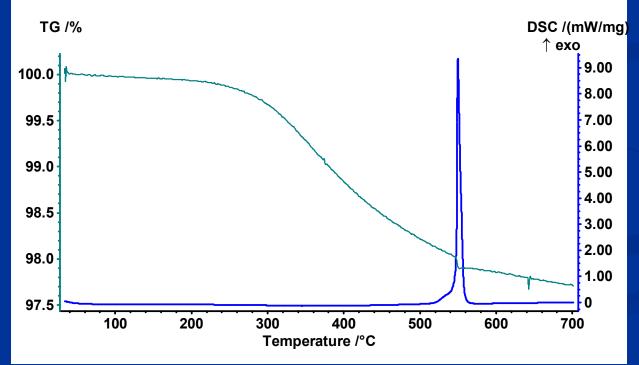
Amorphous and crystalline HfO_2 with different surface area can be synthesized by precipitation following by controlled annealing.

HTXRD

BET



High-temperature XRD and BET on precipitated HfO₂


Thermal analysis of precipitated HfO₂ - water and CO₂ evolution detected by FTIR.

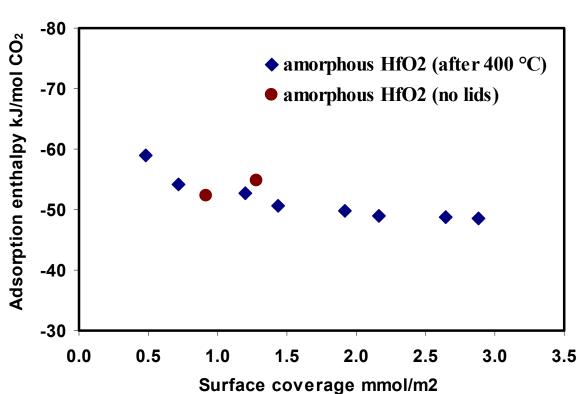
Problem:

Bulk amorphous HfO₂ can not be completely dehydrated and decarbonated without crystallizing it.


H"

Experimental details on CO₂ adsorption on amorphous HfO₂

• amorphous HfO₂ sample was heated in STA 449 up to 400 °C and surface area was detremined by BET to be 84.5 m²/g


• the new portion of the sample was annealed in STA 449 and exposed to CO_2 pulses (0.25 and 1 ml volumes) injected into 40 ml/min Oxygen flow through the cell at 33 °C

Adsorption enthalpy of CO₂ on amorphous HfO₂

Sample mass: 43.38 mg Surface area: 84.5 m²/g (~3.7 nm particle size) Sample surface: 3.67 m²

mass			surf.	∆H _{ads}	
		J/g		kJ per	
mJ	mg	CO ₂	mmol/m ²	mole C	0
-53.55	5 0.04	-1338.8	0.48	-58.92	
-24.59	9 0.02	-1229.5	0.72	-54.11	
-47.85	5 0.04	-1196.3	1.20	-52.65	
-23.04	4 0.02	-1152.0	1.44	-50.70	
-45.23	3 0.04	-1130.8	1.92	-49.76	
-22.24	4 0.02	-1112.0	2.16	-48.94	
-44.23	3 0.04	-1105.8	2.64	-48.66	
-22.08	3 0.02	-1104.0	2.88	-48.59	

Corrections for drop solution calorimetry (for HfO₂)

Assuming weight loss from H₂O and zero hydration enthalpy

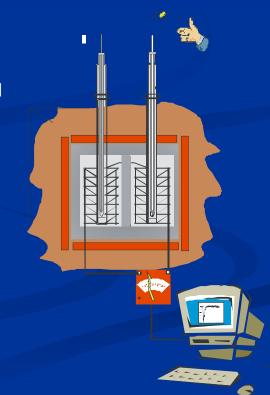
 $H_{2}O_{(\text{sorbed}, 298)} = H_{2}O_{(1,298)}$ (1) ΔH_{adsH2O} $H_{2}O_{(1,298)} = H_{2}O_{(g, 975)}$ (2) $\Delta H_{(298-975)}H_{2}O$ $H_{2}O_{(\text{sorbed}, 298)} = H_{2}O_{(g, 975)}$

 $\Delta H(3) = \Delta H(1) + \Delta H(2) = 69.01 \text{ kJ/mol} = 3.8 \text{ kJ/gram}$

Assuming weight loss from CO₂

 $CO_{2 \text{ (sorbed, 298)}} = CO_{2(g, 298)}$ $CO_{2(g, 298)} = CO_{2(g, 975)}$

) (1) ∆H_{adsCO2} (2) ∆H₍₂₉₈₋₉₇₅₎CO₂


60 kJ/mol 32.05 kJ/mol

0 kJ/mol

69.01 kJ/mol

CO_{2(sorbed, 298)} = CO_{2 (g, 975)}

 $\Delta H(3) = \Delta H(1) + \Delta H(2) = 92.05 \text{ kJ/mol} = 2.1 \text{ kJ/gram}$

DSC/TG vs. Calvet-type calorimeter for adsorption studies:

<u>Pros</u>

1. Allows for annealing the sample in-situ before experiment - preparing the surface, repeating adsorption-desorption cycles without opening the cell, etc.

2. Additional information on desorption from EGA and TG.

<u>Cons</u>

- 1. Sensitivity limited vs. Calvet type.
- 1. Limited to constant gas-flow conditions.
- 3. Limited to high surface area samples with large adsorption enthalpies.