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Abstract 
An integrated informatics solution, compatible with multiple instrument formats, covering the full range 
of steps from raw data processing to biomarker identification, has been long-anticipated by researchers 
performing metabonomics studies. Such a solution now exists, and we will demonstrate its successful 
application to the analysis of 1H NMR spectra of human serum samples from 37 diabetic and non-
diabetic subjects. This integrated informatics approach also includes an innovative patent-pending 
spectral Overlap Density Heatmap (ODH) tool.  By relating statistical findings to spectral observation in 
a supervised approach, ODH complements Principal Component Analysis (PCA) and offers meaningful 
direction for biomarker identification. 
 
The integrated informatics approach to metabolomics research includes the following steps: 

• Batch processing of raw FIDs, phasing, baseline correction, and cross-spectral alignment. 
• Batch import of the processed spectra. 
• Include/exclude spectral ranges, optional binning and bucketing, pre-processing, Y-transforms, 

and PCA. 
• Visualization as an Overlap Density Heatmap, a novel method to quantitatively evaluate the simi-

larity/dissimilarity among multiple overlaid spectra. 
• Comparative use of loadings plots resulting from PCA and peaks resulting from Overlap Density 

Heatmaps as search queries against a database of known metabolites. 
• Link to the KEGG database for metabolic pathways of identified metabolites. 

Materials and Methods 
Data 

1. 37 blood samples were collected from 17 diabetic and 20 non-diabetic patients (origin: Prof. 
Xia, Beijing NMR Center). After clotting, 1H-NMR spectra were generated from serum as follows: 

•   BRUKER Avance-500 spectrometer, 500.13 MHz 
•   64 scans collected for each sample, 8K data points 

2. The NMR FIDs were imported into Bio-Rad Laboratories’ KnowItAll® Informatics System, Metabolomics Edition.  
3. The NMR Metabolite Database from the University of Wisconsin Madison was used for metabolite identification.   

 

Spectrum Processing 
The 37 FIDs were batch processed by the ProcessIt™ NMR module in the KnowItAll plat-
form. The parameters used for processing are listed in Figure 2, and were applied as a 
macro function to all the spectral data.   
The GoodLook™ autophasing algorithm, developed by Bio-Rad, is a method that system-
atically optimizes the phase parameters until the integration of the peaks above the base-
line is the highest.  This method works well for spectra with only positive peaks, a relatively 
flat baseline, and does not require that the spectra have many well-isolated peaks–which is 
usually impractical in metabolomics studies. 

Data Pre-Processing and Principal Component Analysis  
A chemometrics component, Infometrix’ Pirouette®, has been integrated within Bio-Rad’s KnowItAll platform for performing PCA. The spectral regions of 10-5.15 
ppm and 4.75 - 0.5 ppm were used for the computation in order to exclude the strong water peaks and other baseline regions. Prior to PCA, each spectrum was 
transformed by subtracting by its baseline value (the value of the 1st point in the region of 10-5.15 ppm) and dividing by sample 2-norm (i.e., vector length normali-
zation).  Mean centering was used in pre-processing. These settings are displayed in Figure 3. 
For the purpose of this study, we used the spectral data points as input to the PCA (no 
binning, full resolution). The software, however, offers a full range of binning-bucketing op-
tions such as fixed-width bucketing, Intellibucket™–variable width binning (setting bounda-
ries at local minima by means of an Overlap Density Heatmap Consensus Spectrum using 
a “looseness” factor e.g., bin widths of 0.04 +/- 0.02 ppm)–, and finally AFNS–Automated 
Filtering of NMR Spectra, a novel method that selects spectral features based on their sta-
tistical significance and then smoothes the spectral points using their optimized filter 
widths. AFNS uses a rolling binning algorithm with multiple bin widths and ANOVA-based 
filtering as a means of identifying significant features in complex spectra.  

 
Principal Component Analysis 
A PCA  is performed according to the data pre-processing settings indicated in 
Figure 3. The scores plot displays a very good clustering of the diabetic vs. 
non-diabetic samples. (Figure 8). The loadings plot expresses loading values 
(peak position in ppm) on the X-axis and the intensity of their contributions to 
the factor variance on the Y-axis (Figure 9) . 
There is a high level of agreement with the findings of the ODH studies, pre-
sented in the former section, that is made visible by examining the loadings 
plot. Note the importance of peaks or peak areas A, B, C, and D (Figure 11). 
 

From query spectra to metabolite database searching  
Both ODH and PCA allow researchers to reconstruct a query spec-
trum that can be searched against databases of metabolites, either 
by subtracting the non-diabetic ODH consensus spectrum from the 
diabetic one (Figure 10) or by transforming the loadings plot into a 
query spectrum. Both PCA and ODH query spectra are very similar 
(Figure 11), all peaks—whether negative or positive—being taken 
into account in the  query spectrum confirm the results described 
above. 

The query spectrum can then be searched against a database of 1H NMR spectra. In this 
study, we utilized a database provided by the University of Wisconsin Madison, converted in 
the KnowItAll *.sdb file format in order to make it fully searchable. The hits are ranked by 
similarity to the query spectrum order.  To further link these findings to useful biomarkers, 
hits resulting from searches are linked to the KEGG database, providing additional informa-
tion on the metabolite composition and participation in metabolite pathways. An example of 
such a hit is given in Figure 11 where the 3.9-3.4 ppm range of the spectrum-converted load-
ings returned glucose-1P as one of the major hits.  

Conclusions 
 

This NMR-based metabolomics study demonstrates the potentials of utilizing a software platform that combines the full range of applications from raw data analy-
sis to biomarker identification in one single environment. The well-established PCA and the novel Overlap Density Heatmap technology provided within the 
KnowItAll® Informatics System complete each other for the identification of key metabolites or biomarkers: ODH provides a visualization tool that “talks” to the 
chemist and allows direct examination of the data, either in a supervised or non-supervised way. Such an advanced tool can help define the best spectrum proc-
essing and data pre-processing options, and lead researchers to identify spectrum areas on which to focus in their analyses. PCA, on the other hand, provides 
easier automation and reproducibility, as well as easier access to time evolutions via the display of trajectories in toxicity studies.   
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Overlap Density Heatmap 
Overlap Density Heatmap (ODH) is a novel technology, designed by Bio-Rad (patent pending), which allows researchers to visually examine and evaluate spectral 
differences or commonalities. As opposed to statistical analysis methods such as PCA and other multivariate analysis techniques, ODH is applied to the full resolu-
tion spectra, with no binning or bucketing data preprocessing. Compared to a conventional overlay display of multiple spectra, ODH allows one to quickly identify 
the highly common areas (in red) and less common areas (in violet) in each group, and hence provides a better technique to overview multiple spectra (Figure 4).  
In order to overcome possible peak misalignment issues, which constitute a common problem in metabonomics studies, several global and local peak alignment 
options exist in the KnowItAll system.  

ODH can be utilized either in a non-supervised or in a supervised manner. In a non-supervised approach, all the sample spectra are selected regardless of their 
class of origin. By moving the ODH selector toward “Dissimilarity”, one will highlight the peak areas of highest variability. Peaks of highest interest for class separa-
tion are then identified in a supervised way by examining the ODH at OD level = 0 and its related consensus spectrum for each class considered. 

Results and Discussion 
Identifying spectrum areas of highest variability with ODH 
We first utilized ODH in a non-supervised man-
ner—all samples (i.e. non-diabetic and dia-
betic) were selected—with an ODH Level = -36 
that corresponds to an area under the curve 
(AUC) of 80% relative to the total AUC at OD 
level = 0.  Four areas of high variability—noted 
(a), (b), (c), and (d) in Figure 6—are identified.  

ODH is then used in a supervised way by gen-
erating a consensus spectrum (OD level  = 0) 
for each class: diabetic and non-diabetic. The 
peaks that best point to class separation are 
the peaks in the carbohydrate area between  
4.04 and 3.37 ppm (A), and in the aliphatic 
area with peaks centered at 1.30 (B),  1.18 (C) 
and 0.856 (D) (Figure 7). Note that C is unique 
to the diabetic class, while the other areas re-
flect changes in abundance between non-
diabetic and diabetic samples. 

Whilst the non-supervised approach helped determine areas of highest variation within all samples, regardless of their class, the supervised approach confirmed those peaks 
that were most responsible for class separation, providing additional information on the nature of the variability: which peaks are unique to a given class (i.e. (C) unique to dia-
betic) and which ones are present in both classes, but with significant variation of intensity (i.e. (A), (B) and (D) in one class vs. the other one). 

Figure 1 — Biomarker Identification Workflow. 

 

Figure 3 — PCA data preprocessing parameters. 
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Figure 2 — NMR spectra batch processing parameters. 

 

Figure 4 — Overlap Density Heatmap of 1H spectra of non-diabetic and diabetic samples 

 with their respective consensus spectrum on top (ODH Index set at 0 for each class). 
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Figure 8 — PCA scores plot. Figure 9 — PCA loadings plot. 

 

Figure 10 — Constructing an ODH query spectrum.  Figure 11 — Comparing ODH and PCA query spectra.  

 

Figure 12 - Query spectrum and returned hitlist with records linked to KEGG.  

 

Figure 6 — ODH non-supervised appraoch: identification of areas 
of high variability in the 4.75-0.25 ppm range. 

Figure 7 — ODH supervised approach: peaks responsible for best class 
separation in the 4.75-0.25 ppm range. 

 


