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Rational
High throughput screening (HTS) is an expensive part of the drug development process. Increasing the efficiency and 
productivity of HTS is a key objective for today’s discovery organisations. Predictive technology can be used to direct the 
screening of compounds prior to synthesis. However, issues such as the small proportion (usually less than 1%) of hits that 
occur in a given assay, complicate the application of statistical analysis and predictive modelling to this data.

What is required is an analysis technique that increases the significance of the data for the active compounds, while using 
all the information present in the original data set.

Introduction
The recent publication of the genome of the human malaria parasite, Plasmodium faciparum, will greatly enhance the 
drug discovery effort in this area, enabling identification of novel molecular targets. However, small molecule inhibitors that 
interact with these targets are essential for the development of new antimalarial drugs and the elucidation of the role of 
newly identified targets.

Erythrocyte invasion by the malaria merozoite requires the activity of parasite serine proteases, and can be prevented 
by serine protease inhibitors. Compounds which selectively inhibit proteases involved in erythrocyte invasion and other 
aspects of erythrocytic growth have potential for development as antimalarial drugs. Research aimed at characterizing 
these proteases led to the identification and recombinant expression of a P. falciparum subtilisin-like serine protease called 
PfSUB-1. The product of a conserved single-copy gene, PfSUB-1 displays relatively high substrate specificity, is expressed 
in a subset of secretory organelles in the mature blood-stage schizont and merozoite and is implicated in invasion or post-
invasion events. 

This poster presents a real-world case study carried out between MRCT, the technology transfer company associated with 
the UK’s Medical Research Council, and IDBS. Together, a method was developed for improving the statistical significance 
of active compounds identified during HTS screening. The resulting ‘enhanced’ data is used to develop predictive models 
that can then be used to direct screening programs in real time. 

Model r2 Chi2 SE a Mean error Constant Num. of com-
pounds / outliers

Num. of 
fragments

Num. of principal 
components

LSF_F(1) 0.8512 3.877 0.090 0.00228 1.071 1559/7 1080 N/A
PLS_F(1) 0.9414 1.565 0.032 0.00081 0.962 1561/5 8716 21

Table 1. Statistics for generated QSAR models

Cross-validation 
Leave-One-Out (LOO) cross-validation results are shown in Table 2.

Leave-Many-Out (LMO) validation was performed using the PredictionBase Leave-Group-Out validation procedure, splitting the 
training set randomly into test groups of 25% of compounds and automatically recalculating new regressions and predictions 
for this group of compounds. For comparison, the average values from 4 groups (iterations) were used. Comparisons of cross-
validation results are shown in Table 2.

Model q2 (LOO) MIC* (LOO) r2 (LMO) q2 (LMO) MICa (LMO)
LSF_F(1) 0.8498 2.77 0.9533 -1.8138 120.98
PLS_F(1) 0.9408 197.6 0.9665 0.6996 3841.00

*PredictionBase Model Instability Coefficient

Table 2. Statistics for cross-validation results

To analyze the predictive power of the models, the results have been  
classified into three groups (summarized in Figure 6 [5]):

1. “Good” results.  The activity values have been divided into active  
     compounds (<0.5) and inactive compounds (>0.5). If the  
     compound experimental value was less than 0.5 and the predicted  
     value was less than 0.5, the result is counted as “good”. The 
     same applies to the inactive compounds with values over 0.5: if  
     predicted values were over 0.5 it is also counted as a “good” 
     result.

2. “Average” results were classified the same as good results, but with  
     the interval extended to 0.5 ± 0.2.

3. “Bad” results are where the predicted value cannot be referred to as  
    “good” or “average”.

Model R2mina r2maxb Chi2mina Chi2maxb SEmina SEmaxb

LSF_F(1) 0.6461 0.7401 6.771 9.233 0.119 0.139
PLS_F(1) 0.6590 0.7487 6.549 8.886 0.117 0.137

a Minimum value from the 100 iterations
b Maximum value from the 100 iterations

Table 3. Statistics for Y-randomization results

These results indicate that the PLS_F model performs better than the LSF_F model and the quality of prediction is improved 
in models with fewer compounds in the training set. The reason for this is that by applying the flattened distribution method 
the percentage of active compounds is increased, leading to a corresponding increase in the statistical significance of active 
compounds.

Table 4. Statistics for external test set validation

Model r2 q2 Chi2 SEa Mean error Constant
LSF_F(1) 0.8512 -1.763 3.877 0.090 0.0023 1.071
PLS_F(1) 0.9414 0.504 1.565 0.032 0.0008 0.962

a   Standard Error

Materials and Methods
This study was based on the screening results for 10,000 compounds against a Malaria PfSub-1 serine protease inhibition 
assay [1], which measures inhibition of a protease important in the blood stage of the malarial parasite. MRCT had 
performed an initial round of diversity screening that was only partially successful in identifying hits. None of these ‘hit’ 
compounds were sufficiently potent to carry forward.

IDBS used its predictive software [2] to analyze these initial hits in an effort to identify the substructural components that 
contributed towards the potency of the hits. The objective was to aid the selection of compounds for the next stage of the 
screening process.

Figures 4 and 5 show the experimental/calculated graph for PredictionBase LSF_F(1) and PLS_F(1) models respectively, showing 
the confidence intervals 95%.

Cross-validation results indicate that all the models are relatively stable but become underfitted when 25% of compounds are 
removed.

To check the possibility of random correlations, the Y-randomization test was performed by scrambling activity values for the whole 
set of compounds and recalculating regressions. This operation was performed 100 times (iterations). Results are shown in Table 3.

Y-randomization test results indicate that the achieved level of random correlation is significantly lower than that of the original 
regression leading to the conclusion that the models are not random. 

External test set validation
A set of 59 compounds was supplied by MRCT without their experimental data as an external test set. Statistics for the test set 
validation are given in Table 4.

Model Num of ‘Bad’ 
results

% of ‘Bad’ 
results

Num of ‘Average’ 
results

% of ‘Average’ 
results

Num of ‘Good’   
          results 

% of ‘Good’ 
results

LSF_F(1) 16 27.1 3 5.1 40 67.8
PLS_F(1) 7 11.9 7 11.9 45 76.3

b Maximum value from the 100 iterations

Table 5. Classification results

Conclusions
We have presented a new method for treating HTS data. The results of a Malaria PfSUB-1 serine protease inhibition assay 
shows that by applying intelligent filtering of HTS data, the statistical significance of the active compounds can be enriched, 
and generation of predictive models. Flattened distribution filtering is an important development as it broadens the achievability 
of QSAR techniques to support drug discovery. These models provide medicinal chemists with a powerful tool for optimizing 
compounds and mining screening candidates in libraries.

The poster presents a simple way of using QSAR models generated in PredictionBase to virtually screen HTS data and increase 
its productivity. A typical screening campaign can be modified by splitting into the following stages (see Figure 7):

1. Screen just 20% of the total number of compounds.

2. Filter the results using the above discussed technology.

3. Build a QSAR model.

4. Apply the QSAR model virtual screening process to filter all remaining compounds.

5. Repeat step 1 – 4 (with the QSAR model amendment based on new results) until very little to zero hits are found in the  
       virtual screening.

Using this technology the total number of compounds to screen will be reduced by at least a half. Despite the cost of modelling 
and time spent on virtual screening, the total cost of the screening campaign is also reduced by at least 40% (see Figure 8).

Summary
Predictive models can be generated that intelligently filter HTS data in real time to help guide the screening process. The 
maximum benefit is gained when the scientists use these predictive approaches directly. By adopting an iterative process of 
synthesis and testing, and feeding the results back into predictive models, bench scientists have a powerful tool that can be 
used to mine screening candidates in libraries and aid compound optimization. Empowering these scientists with such predictive 
capabilities not only contributes to increased productivity and efficiency, but also helps reduce discovery costs. 

Summary statistics for the models are given in Table 1.
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Similar to that of processing sound when the level of noise is higher than the signal, the noise  
must be reduced without damaging the main signal. Taking this analogy, a method was  
developed to flatten the frequency distribution of HTS data, based on the activity/property  
distribution function, see Figure 1. (Full details of the method can be found in [5].)

                                               Figure 2 shows the frequency distribution graph for an initial set  
                                               of 10,000 compounds. The data indicates that the number of the  
                                               hits in this assay is less than 1% of the total number of  
                                               compounds.

                                               With this number of active compounds, any statistical analysis will lead to elimination of  
                                               these compounds as outliers. To make the number of active compounds statistically 
                                               significant, they should represent over 5% of the total number  
of compounds. Applying the technique described earlier, the total number of compounds was  
reduced to 1566 compounds while maintaining the same frequency distribution (see Figure 3). 

These 1566 compounds were then used to build QSAR models  LSF_F(1) and PLS_F(1). 

During the fragmentation process, 8716 fragments from the 1566 compounds and 3342  
fragments from the 409 compounds were generated from the training set or mapped from a  
predefined set of fragments. These fragments together with their frequency of occurrence in  
each structure were used for regression analysis.                                              
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P = predicted value
E = experimental value


