CHI's Advancing Library Design and Organic Synthesis Meeting, February 24-27, 2003, La Jolla, California

Automated Generation of a Dihydropyrimidine Library Using Sequential Microwave-Assisted Synthesis

Alexander Stadler and C. Oliver Kappe*

Institute of Chemistry, Organic and Bioorganic Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria E-mail: alexander.stadler@uni-graz.at Website: http://www.maos.net

Model Reaction:

Conventional Conditions: EtOH, cat. HCl, reflux, 3h, 78% yield K. Folkers et al., J. Am. Chem. Soc., 1932, 54, 3751-3758

Step 1: Choose Solvent

- > best solvent: AcOH/EtOH 3:1
- effectively couples with microwaves
- dissolves building blocks under reaction conditions
- DHPM products sparingly soluble at rt

Step 2: Select Catalyst

· HCI causes decomposition of urea and leads to unwanted byproducts at higher temperatures Lewis acids are more tolerable and have been reported to be effective catalysts

Software Aided Library Generation

Emrys Workflow Manager

creating tools

4

Prepare stock solutions of aldehydes (AcOH) and CH-acidic carbonyls (EtOH)

- · Enter building blocks & reaction conditions into the software
- · Generate dispensing strategy
- · Run the automated protocol (unattended)
- Work up (filter products directly or add H₂O)

Step 3: Optimize Temperature & Time

⇒ General MW Protocol: 4 mmol building blocks, 2 ml AcOH/EtOH 3:1 10mol% Yb(OTf)₃, 10 min, 120°C

Heating Profile

Step 4: Reoptimization for Troublesome Building Block Combinations

AcOH/EtOH 3:1 EtOH EtOH EtOH 10 mol% LaCl₃ 120°C, 10 min 10 mol% Yb(OTf)₃ 100°C, 20 min 10 mol% HCl 120°C, 15 min 10 mol% LaCl₃ 120°C, 10 min 56% yield 41% yield 50% yield 59% yield

Results and Conclusions

- > 48 member DHPM library generated within 12h (52% average yield)
- > DHPMs produced in 200-1000 mg quantities
- Reaction times reduced from hours to minutes
- Reaction optimization within hours
- Establishing of library production protocol within days
- > Sequential treatment allows for individuality optimized conditions

Stadler A., Kappe C.O., J. Comb. Chem., 2001, 3, 624-630

Acknowledgements

This work was supported by the Austrian Science Fund.

We thank PersonalChemistry AB (Uppsala, Sweden) for the use of their instrument.