
New Proteomic Subfractionation Surfaces – Innovative Technology For The Improved Resolution of Serum Proteins

Swapan Roy, Ph.D., John Krupey, Ph.D., Matthew Kuruc, Devjit Roy

ProFACT Proteomics, Inc. Commercialization Center for Innovative Technologies 675 Route One North Brunswick NJ 08902 732-246-1190 (f)732-246-3118 email: mkuruc@profactproteomics.com

ProFACT Proteomics, Inc. Poster Presentation at CHI Biomarker Discovery Summit, September 26,27, 2005

Introduction

ProFACT[™] is a new subfractionation methodology designed for comparative proteome analysis. Electrophoretic profiles of serum subfractions demonstrate improved resolution and quantification. Carryover from the three highest abundance serum proteins, Albumin, IgG and Transferrin is minimal. The process starts with a separation platform utilizing a new combination of surface microenvironments substituted with low molecular weight substrates that feature drugbinding motifs. With the **ProFACT[™]** surface library, **undenatured**, **bioactive** proteins can be subfractionated into differential pools. Separations are universal as they do not require prequalified binding knowledge, a key limitation of affinity-type techniques. The surfaces utilized are disposable and adaptable to sample size and scale requirements. A simple bind, wash and elute protocol is completed in 30 to 60 minutes and as elutions are mild and consistent, a direct handoff can be made to subsequent interrogation. The interrogation strategy is adaptable to meet investigative inquiry using 'bottom-up' or 'top-down' approaches.

Detailed iterative profiling can be applied towards biomarker discovery, disease-state pattern identification, systems biology, or otherwise be useful to reduce sample complexity. The ProFACT[™] surface library can potentially be coupled with HPLC, Capillary Electrophoresis, 1 and 2D Electrophoresis, and Mass Spectrometry to expand coverage and sensitivity. As structural modifications of proteins can alter their binding affinities to the surface library, structural differences in sample sets may be inferred upon interpretation of ProFACT[™] subfraction profiles.

The data presented herein demonstrate the unique profiling capabilities of each ProFACT[™] surface library subfraction and the collective resolution of 69 non-redundant proteins, calibrated and quantified from image analysis of SDS-PAGE profiles. 10 differential protein subfractions can be generated in less than 1 hour, without the need for immuno-depletion. Future investigations will focus on comparing normal and disease state sera.

Background and Significance

Proteomics is encumbered by complexity, unreliable quantification, low-throughput technologies, and lacks systemic ability to uncover structural and functional isoform changes. Recent attention has attempted to reduce the complexity of protein samples, particularly with serum due to the presence of three major protein regions: Albumin, Transferrin and Immunoglobulin. To address this problem, several products have been introduced that have selective binding properties towards one or more of the high abundance proteins in serum. These work through high affinity interactions, most notably using immuno-affinity. Subsequent resolution techniques typically include either 2-dimensional electrophoresis (2DE) or multi-dimensional HPLC. While productive, these methods generally are:

- costly for large sample sets,
- > cumbersome and low throughput,
- > at best only moderately quantifiable,
- > generate limited structural information,
- > not providing intact, bioactive protein pools.

ProFACT[™] is a new subfractionation surface library intended to address these fundamental problems.

Complexity Reduction Strategy

The ProFACT[™] process begins by first subfractionating serum, then analyzing, comparing and contrasting each subfraction individually. 1-dimensional electrophoresis is well-suited for this task as it is quick, reproducible and offers precise peak resolution capability and relative peak calibration and quantification after analysis through commercially available image software.

From each ProFACT[™] surface subfraction, both an electropherogram and digital profile is generated. The strategy in principal is to identify differences in one or more subfractions through comparative analysis between samples. Differences in subfractions are the "hit" subfractions and only these need to be analyzed further. These "hit" subfractions contain a reduced protein complexity and proteins are pooled with structural and functional integrity intact, potentially valuable in secondary bioassays.

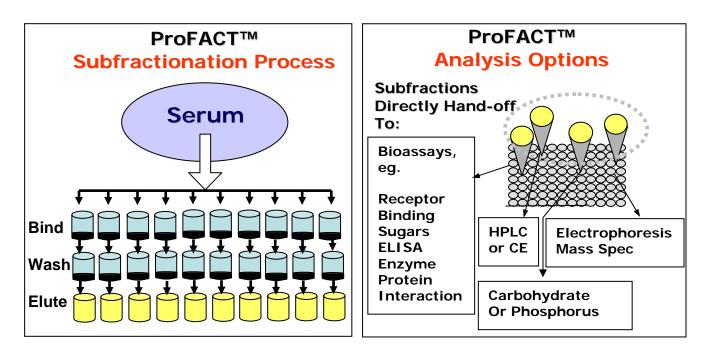
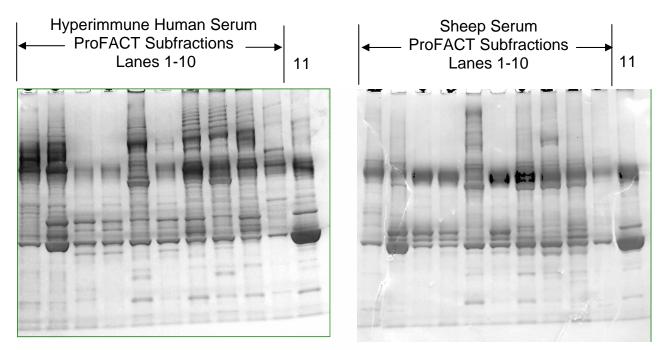


Figure 1

Figure 2

ProFACT™ Subfractionation Surface Library

The ProFACT[™] surface library is constructed by spatially presenting drug-binding motifs within microenvironments such that binding interactions occur homogeneously with proteins. Unlike conventional chromatrography, **ProFACT[™]** surfaces are not subject to the predominant influence of protein concentration. Therefore high abundance proteins compete with low abundance proteins for each surface selectivity site. The net result is a substantial voiding of the high abundance proteins and subsequent unmasking of the low abundance proteins. Thus, the surface library produces distinctive protein pools that can be immediately analyzed by high resolution electrophoretic and potentially other bioarray techniques. In the analysis that follows, 10 ProFACT[™] subfractionating surfaces are shown to modulate selectivity on a pooled human serum sample. Simple bind (pH 6), wash and elute (pH 9) protocols (Figure 1) provide a reduction of complexity, each differentiated pool ready for subsequent analysis (Figure 2).


ProFACT Proteomics, Inc.

Poster Presentation at CHI Biomarker Discovery Summit, September 26,27, 2005

Experiment Design

In order to utilize the proposed complexity reduction strategy, we needed to first investigate the utility of combining the ProFACT[™] surface library with 1-dimensional SDS-PAGE. By demonstrating the differentiation of each subfraction, new proteomic profile capabilities and strategies become available.

ProFACT[™] surfaces are constructed from silica specially adapted to meet the requisite separation characteristics. Each surface was weighed (0.25 Grams) and placed into spin microtubes such that the total volume of wet surface was approximately 50 µls. Each surface was washed with pH 6 binding buffer, twice using 400 µls. 0.5 ml of serum was diluted to 5 ml with pH 6 binding buffer and 300 µls of the diluted serum applied to each surface. All surfaces were then shaken for 10 minutes and centrifuged, the surfaces washed 2X with pH 6 buffer, and then eluted using 100 µls of a pH 9 buffer. The total separation time was about 1 hour. ODs were taken with the Nanodrop® spectrophotometer. Samples were dried and then resuspended in 10 µls Tris-Glycine-SDS sample buffer. Each subfraction was applied to the gel for electrophoresis. Non-reducing electrophoresis conditions were: 4-20% precast gel (Invitrogen), 130 volts, run for 90 minutes and stained with Simple Blue Stain[™] (Invitrogen).

SDS-PAGE Profile of ProFACT™ Subfractionated Human and Sheep Serums

Lane 11 - Serum Controlsl Untreated

Results and Discussion

After de-staining, the gel was scanned and then analyzed with the image software TotalLab[™] (Non-Linear Dynamics). Lanes 1-10 correspond with ProFACT[™] surfaces 1-10; lane 11 is a serum control. We allow that there is subjectivity in the selection of peak picking parameters, and we have attempted to be moderate in their selection so as to have a reasonable estimate of the total number of resolved peaks in each lane and the aggregate number from all lanes combined. By manually adjusting the image boxes in each lane, distortions in the gel are compensated, Figure 3.

Each lane can then be scaled equivalently from 0 to 1, called the Retardation Factor, or "Rf". Protein peaks can then be identified through their Rf number, i.e., all Rf proteins corresponding to 0.19 are assumed to be resolved the same and for discussion purposes are considered individual. With similar methods, overlays can illustrate the substantial reduction of high abundance peaks and the subsequent resolution of many underlying proteins from regions associated with Albumin, Transferrin, and Immunuglobulin.

Each individual lane presented below illustrates the derivative electropherogram profile and its associated lane image, Figure 4. An overlay of each lane compared to the serum lane control, is encompassed in Figure 5.

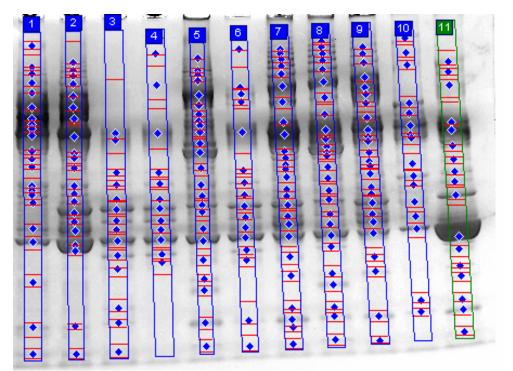


Figure 3 TotalLab™ Image Analysis of Each Lane

Figure 4 Lane by Lane Analysis of Each Boxed Image and Its Derivative Electropherogram

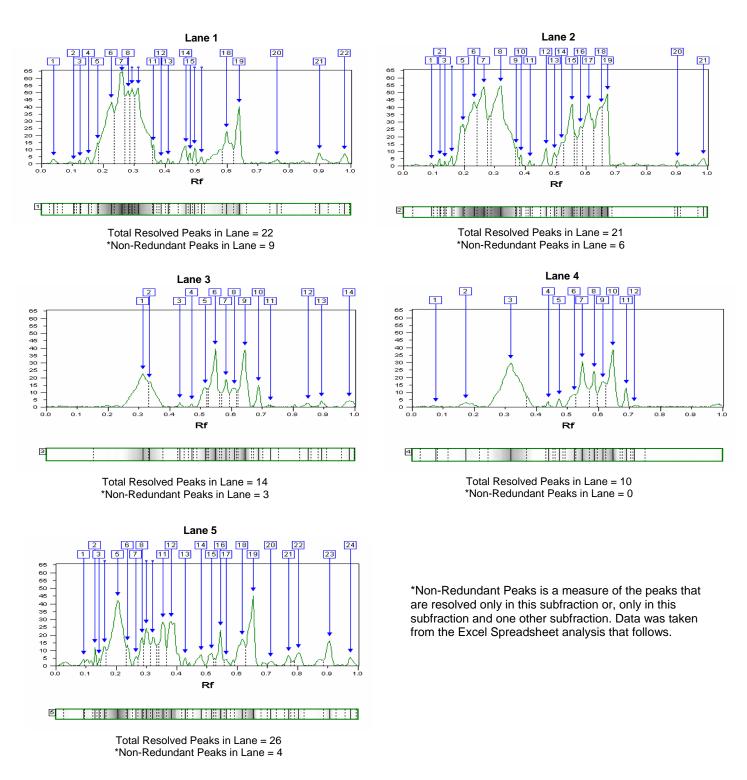


Figure 4 (Continued) Lane by Lane Analysis of Each Boxed Image and Its Derivative Electropherogram

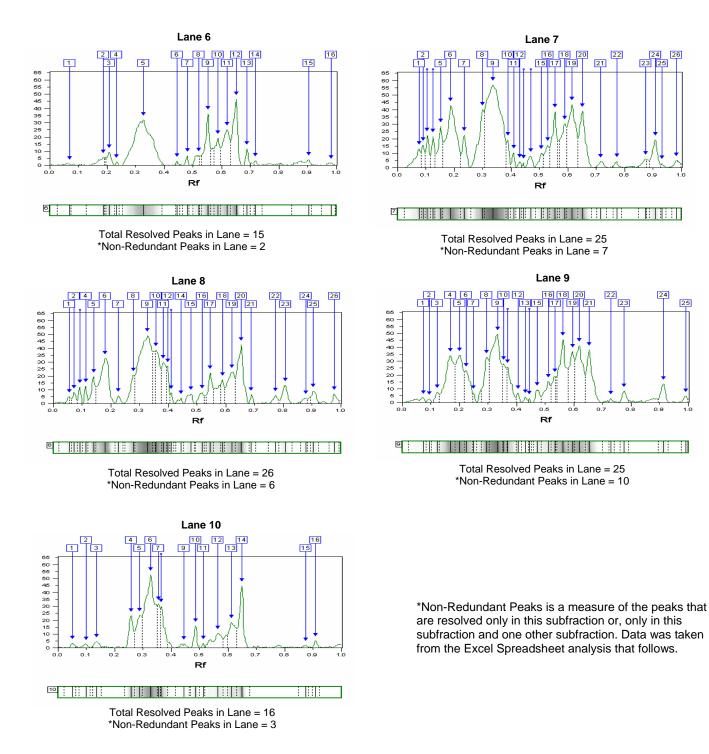
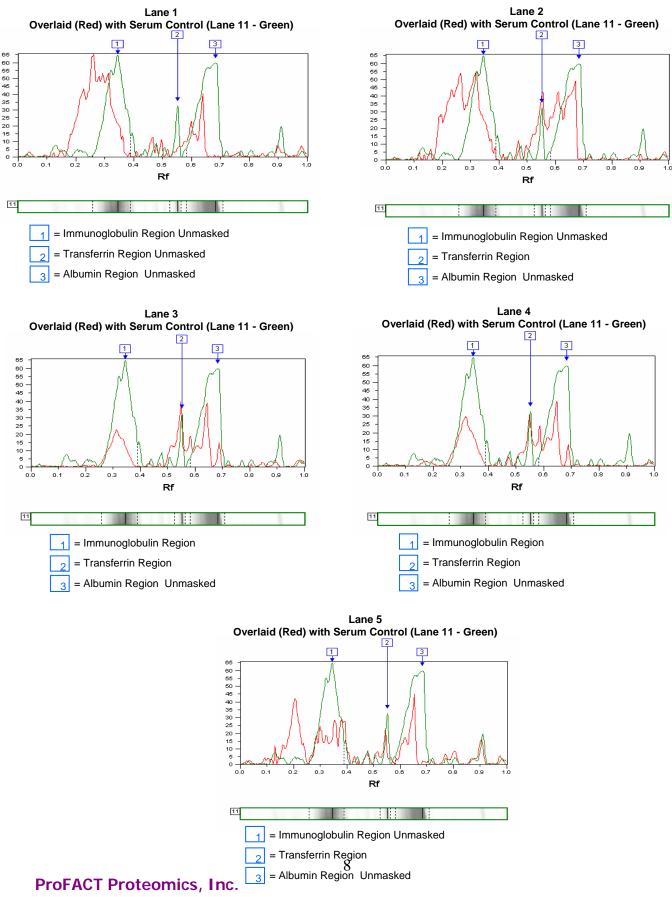
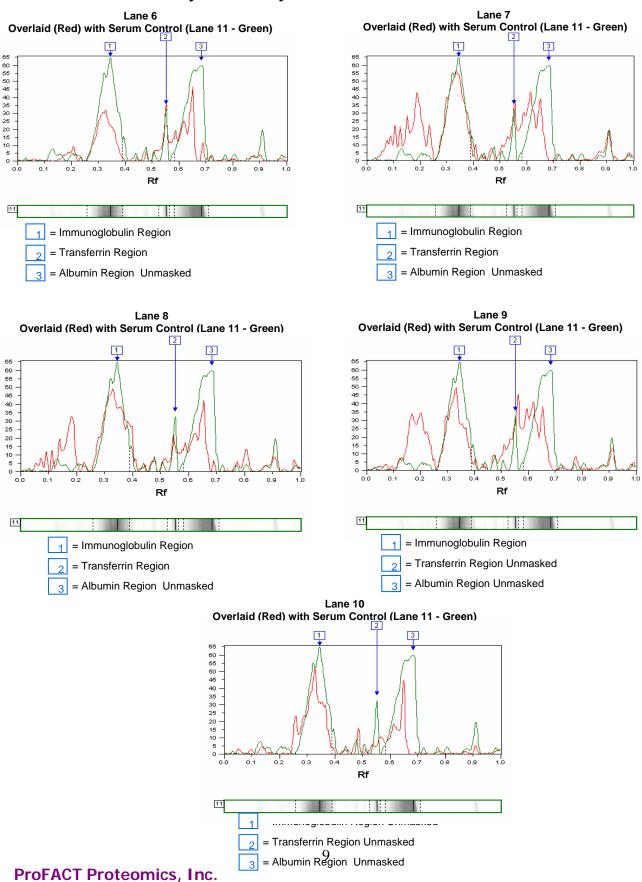




Figure 5 Lane by Lane Analysis vs. Serum Control

Poster Presentation at CHI Biomarker Discovery Summit, September 26,27, 2005

Figure 5 (Continued) Lane by Lane Analysis vs. Serum Control

Poster Presentation at CHI Biomarker Discovery Summit, September 26,27, 2005

Excel Data Analysis

Band. Band numbers correspond to the gel image peak analysis.

Volume. TotalLab[™] software integrates all the pixels from each resolved protein peak and quantifies each as volume data. Volume data is relative and may be useful in algorithms when comparing peaks from one lane to the next or when measuring sample to sample variance. Peak height to volume data algorithms may reveal structural isoforms, especially glycosylation which tends to spread bands.

Rf. The Retardation Factor or Rf, is a scale from 0 to 1, that allows the software to compensate for lane to lane gel distortions, enabling a precise calibration when comparing lanes. Therefore, all peaks possessing the same Rf with a 1% threshold variance, are characterized as equivalent in this analysis.

By exporting the TotalLab[™] data to an Excel spreadsheet, all of the Rf equivalent peaks can be aligned and interpreted.

Results and Interpretation:

- > Collectively, 200 individual peaks are resolved,
- > There are 69 Rf equivalents with a 1% threshold variance,
- > Each subfraction lane provides a unique profile,
- > Individual peaks are quantified and calibrated,
- > Profiles contain a range of redundant, semi-redundant and non-redundant peaks,
- > Unique subfractions based upon structural features, not possible with alternative techniques.

# Peaks in	67 69	3 66 55	63	61	60	57	55	54	51 52	49 50	47 48	45	43 44	41 42	40	37	36	33 34	31	30	27 28	25	24	23	20	18 19	17	15	13	11 12	10	00-	9	5 4	3 23		Progressive Peak Number
Total Peaks 1 or 2 Lanes	2 6 -1	× 07 N	<u></u>	1 2	-1 33	<u> </u>	2 1	4	27	- - 07	4 2	5 -	-1 33	6 1		ω N	1 4	6 2	σι ω	2 3	- - ω	ωω	, _, (3 2	4 5	3 4	. 6, 0	¤ 2	2 2	- - ω	2 -	• ↓ (2 12	2 3	4 5		Peak Redundancy (# of Lanes)
Lane 1= Lane 1=	22 45837	21 63528				20 54427				19 73653	18 69720				17 32929	16 36763	15 24064			13 22309	12 33883				10 129899				5 42728		4 60020	U 22400		2 57068		52949	Lane 1 Band Volume
9 9	0.98	0.90				0.76				0.64	0.60				0.52	0.50	0.48	0.47		0.42	0.39				0.32	0.29	0.27	л од	0.19		0.16			0.11		0.05	R
Lane 2= Lane 2=	21 45709	20 27342						19 76801	43893		17 82319	16 34759			14 45213	13 33570		12 47878		11 22855	32582	9 22384			8 196948		7 96109	00/10	5 79530	4 48928		3 15310	24074	1 122933			Lane 2 Band Volume Rf Band
6 6	0.98	0.90						0.67	0.65		0.61	0.58	0.56		0.52	0.50		0.47		0.42	0.39	0.38			0.33		0.27	2	0.20	0.17		0.14	2	0.10			R <mark>R</mark> B
Lane 3= Lane 3=	14 57285		35457	12 53892				11 53515	10 77592		41251	8 41920		7 71502	6 53177			5 25284	4 30081					3 78551	2 135566					1 194772							Lane 3 Volume Rf Band
3 ¹⁴	0.98		0.89	0.85				0.69	0.65		0.61	0.59		0.55	0.52			0.47	0.44				-	0.34	0.32				_	0.17							R.
Lane 4= Lane 4=								10 57342	9 72945			7 39295		6 68894 0.55	5 47007			4 31288	3 17319						2 223218										1 60040 0.07		Lane 4
o 10								0.69	0.65		0.61	0.59		0.55	0.52			0.47	0.44						0.32									+	0.07	-	Rf Band
Lane 5= Lane 5=	26 27920	25 42377	24 29299	23 32063	22 22794		21 36805		20 67008	48757			18 26416	38124	16 35752		15 52025		14 23465			13 76406	00000	12 38358	11 26633	38643	27311				5 28058	4 14367	47407		2 35184 0.09	41261	Lane 5
26 4	0.98	0.91	0.88	0.81	0.77		0.71		0.65	0.62			0.56	0.55	0.52		0.48		0.43			0.38		0.35	0.32	0.30	0.27	0.21			0.16	0.14	2 2		0.09	0.04	Rf Band
Lane 6= Lane 6=	15 53643	14 71251					31598	12 30295	11 68615	55850		9 33371		8 50930	7 33025		6 30804		5 16993						4 213373		20200	2 123481							1 55583 0.07		Lane 6 Volume
2 15	0.98	0.91					0.72	0.69	0.65	0.62		0.59		0.55	0.52		0.48		0.44				-		0.33			0.21							0.07		Rf
Lane 7= Lane 7=	25 29324	24 52440	23 33426		22 38865		21 44777		20 79078	75501		18 43306		52991	10 TEUDT 16 36401	42054		14 52065	12 30978 13 17694	11 30005	10 26989			9 179472		8 92363	1 02002		6 126198		5 4/659	47050	4 33495	3 30486	90291 26536		Lane 7 Volume
25 7	0.99	0.91	0.88		0.77		0.72		0.65	0.62		0.59		0.55	0.53	2 2		0.47	0.43 0.44	0.41	0.39			0.34		0.30	0.20	ວ ນີ	0.19		0.10		0.12	0.10	0.07		Rf B
Lane 8= Lane 8=	26 45406	25 34249	24 30530 0.88	23 49835	22 43252			21 28745	20 80232	19 56726		18 24920		17 39513 0.55	16 47083		15 54343		14 38198 0.44	13 21290	21941	11 36989	10 42853		9 133655		54968	07057		6 123205		5 49003		4 32466 0.11	2 28259 3 32124	1 51279	Lane 8 Volume
26 6	0.98	0.91	0.88	0.81	0.77			0.69	0.66	0.62		0.59		0.55	0.52		0.48		0.44	0.41	0.40	0.38	0.36		0.33		0.28	2 22		0.18		0.14		0.11	0.07 0.09	0.05	R,
Lane 9= Lane 9=	24 46135 25 24108	10100			23 38213	22 23941			21 92033	20 69652	46366		18 73534 0.56	17 26484		53046		14 15561 0.45 15 45867 0.47		12 29929		11 55791 0.37		32105	9 108839		7 24842 0.25		5 73638	4 114419			3 39457 0.12		1 97684 2 37631		Lane 9
25 10	0.92	3			0.78	0.73			0.66	0.62	0.60		0.56	0.54		0,51		0.45	0.43	0.41		0.37		0.35	0.33	67.0	0.25	D 30	0.20	0.17			0.12		0.07		R.
Lane 10= Lane 10=		16 83947							15 65499		14 55655		13 103760 0.57			26884	11 49441	10 68395				9 47269 0.37		21743	7 109399		5 63549 0.26					3 46233		2 48051 0.10	7 2 28259 0.07 1 97684 0.07 3 32124 0.09 2 37631 0.09	1 45799	Lane 10
3 3		0.91							0.65		0.61		0.57		9	5	0.49	0.45				0.37		0.35	0.33	0.29	0.26	D 33				0.14		0.10		0.05	R.

ProFACT Proteomics, Inc. Poster Presentation at CHI Biomarker Discovery Summit, September 26,27, 2005

11

Future R&D

We intend to focus future R&D efforts so as to:

- > establish quantitative standards for serum,
- > use data for predictive insight in developing new ProFACT[™] surfaces,
- > develop ProFACT[™] HPLC to enhance discovery and for top-down proteomics.

Conclusions

ProFACT[™] offers new alternatives for comparison proteomic analysis offering many advantages.

- > Unmask low abundance from high abundance,
- Immuno-depletion not required,
- Multi-subfractionation process < 1 hour,</p>
- Adaptable to high throughput, multiwell systems,
- Intact protein analysis,
- Protein-Protein interaction,
- Focus electrophoretic parameters on MW regions of interest,
- > Selection of protein subfraction 'hits' reduces complexity,
- Precise quantitative comparisons and algorithms,
- Structural isoforms may be inferred.