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Introduction

Plasmodium falciparum is evolving resistance to Artemisinin Combination Therapy (ACT) in South East Asia and if resistance spreads further
millions of lives will be at risk. The gene with the strongest association with resistance is K13. K13 is an ortholog of the well characterized
transcriptional regulator Keap1. In this work we transcriptionally characterized a mutant with a transposon inserted in the K13 promoter region
which results in dysregulation of K13 at 2 points of the intraerythrocytic cycle of the life-cycle to identify the processes regulated by K13.
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studied because this is the part of the life cycle that causes disease. The mutant and the
parent strain were both synchronized and RNA was harvested at 4 time points representative of
the major stages of the erythrocytic cycle. The RNA was sequenced on an lllumina Miseq and the
resulting reads aligned to a reference P. falciparum genome using HISAT2 and FPKM values
obtained using Cufflinks and Cuffnorm. Changes in the expression of gene sets were evaluated
using GSAR and GAGE.

Results and Future Work

K13 cannot be knocked out, suggesting regulation is the only way
to study K13’s function. Isogenic mutants were created from a P.
falciparum lab strain and despite creating enough mutants to have
disrupted every non-essential gene in the genome K13 was not knocked
out. A mutant was created with an insertion in the 5" upstream region of
K13 resulting in a strain that is more sensitive to artemisinins.
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The mutation does not cause major disruptions to the transcriptome or
progression through the life-cycle in the mutant expect the 6 hour timepoint
shows a transcriptomic shift towards latter timepoints.

C. Pathway regulation through life-cycle
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under similar rates of
transcriptional regulation.
This suggests that the
observed changes in the
transcriptome are specific
and not the result of
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