We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Agilent Microarrays Enable Baylor Researchers to Discover a Mechanism of Genomic Errors Associated with Certain Diseases
News

Agilent Microarrays Enable Baylor Researchers to Discover a Mechanism of Genomic Errors Associated with Certain Diseases

Agilent Microarrays Enable Baylor Researchers to Discover a Mechanism of Genomic Errors Associated with Certain Diseases
News

Agilent Microarrays Enable Baylor Researchers to Discover a Mechanism of Genomic Errors Associated with Certain Diseases

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Agilent Microarrays Enable Baylor Researchers to Discover a Mechanism of Genomic Errors Associated with Certain Diseases"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Researchers at Baylor College of Medicine (BCM), Houston, Texas, have, for the first time, observed a way that DNA additions or deletions associated with a wide range of diseases are introduced in genes during cell division.

Their findings are published in the current issue of the journal Cell. These types of “errors” have been associated with Alzheimer’s, Parkinson’s, Potocki-Lupski Syndrome and other developmental and neurological disorders.

Custom Agilent oligonucleotide comparative genomic hybridization microarrays played a key role in the discovery.

The article, “A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders,” describes a newly discovered mechanism for human genomic disorders called replication Fork Stalling and Template Switching (FoSTes) in which segments of DNA are added or deleted in previously unexpected locations during replication.

“We’re very pleased to provide tools with the flexibility, sensitivity and resolution to enable this breakthrough research,” said Condie Carmack, Ph.D., marketing manager, Agilent. “The Baylor team needed total control over the sequences on their microarrays as well as very high sensitivity and precision to make this research work. Our SurePrint in-situ synthesis platform is particularly well-suited for this type of work.”

“The Agilent microarrays were essential in enabling us to elucidate this novel mechanism,” said BCM’s James R. Lupski, M.D., Ph.D., Cullen Professor of Molecular and Human Genetics, the senior investigator of this report.

When a DNA addition or deletion occurs in the wrong place, a genomic-based disorder like Pelizaeus-Merzbacher disease (PMD) can occur. PMD is a progressive degenerative disorder of the central nervous system in which motor abilities and intellectual function deteriorate. This X-linked neurodevelopment disorder affects males and can have particularly devastating consequences.

Jennifer Lee, Ph.D., the lead author and a member of the team, was studying PMD and found genomic changes that previous theories about DNA recombination did not explain. In some places, extra genetic material was found in the middle of another duplication. Baylor’s FoSTeS mechanism explains this, Lupski points out.

Advertisement