We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
AI Scans Doctors' Notes To Identify Back Pain
News

AI Scans Doctors' Notes To Identify Back Pain

AI Scans Doctors' Notes To Identify Back Pain
News

AI Scans Doctors' Notes To Identify Back Pain

Credit: iStock
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "AI Scans Doctors' Notes To Identify Back Pain"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Mount Sinai researchers have designed an artificial intelligence model that can determine whether lower back pain is acute or chronic by scouring doctors’ notes within electronic medical records, an approach that can help to treat patients more accurately, according to a new study.

About 80 percent of adults experience lower back pain in their lifetime; it is the most common cause of job-related disability. Many argue that prescribing opioids for lower back pain contributed to the opioid crisis; thus, determining the quality of lower back pain in clinical practice could provide an effective tool not only to improve the management of lower back pain but also to curb unnecessary opioid prescriptions.

Acute and chronic lower back pain are different conditions with different treatments. However, they are coded in electronic health records with the same code and can be differentiated only by retrospective reviews of the patient’s chart, which includes the review of clinical notes. The single code for two different conditions prevents appropriate billing and therapy recommendations, including different return-to-work scenarios. The artificial intelligence model in this study, the first of its kind, could be used to improve the accuracy of coding, billing, and therapy for patients with lower back pain.

The researchers used 17,409 clinical notes for 16,715 patients to train artificial intelligence models to determine the severity of lower back pain.

“Several studies have documented increases in medication prescriptions and visits to physicians, physical therapists, and chiropractors for lower back pain episodes,” said Ismail Nabeel, MD, MPH, Associate Professor of Environmental Medicine and Public Health at the Icahn School of Medicine at Mount Sinai. “This study is important because artificial intelligence can potentially more accurately distinguish whether the pain is acute or chronic, which would determine whether a patient should return to normal activities quickly or rest and schedule follow-up visits with a physician. This study also has implications for diagnosis, treatment, and billing purposes in other musculoskeletal conditions, such as the knee, elbow, and shoulder pain, where the medical codes also do not differentiate by pain level and acuity.”

Reference

Miotto et al. (2020) Identifying Acute Low Back Pain Episodes in Primary Care Practice From Clinical Notes: Observational Study. Journal of Medical Internet Research. DOI: https://doi.org/10.2196/16878

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement