Device Should Aid Development of ‘Laboratory-on-a-Chip’
Complete the form below to unlock access to ALL audio articles.
University of Utah engineers invented a tiny, inexpensive "micropump" by using material similar to bathtub caulk, that could be used to move chemicals, blood or other samples through a card-sized medical laboratory known as a lab-on-a-chip.
"The purpose of this micropump is to make it easier for people to receive the results of medical tests when they are in the doctor's office rather than waiting a couple of days or weeks," says bioengineering graduate student Mark Eddings.
"It also might deliver pain medication or other drugs through a device attached to the skin."
Bruce Gale, an assistant professor of mechanical engineering at the University of Utah, says an inexpensive, portable and easy-to-manufacture pump should aid development of a lab-on-a-chip, in which "we take all the components that would fill a room in a medical lab and put them all down on a chip the size of a credit card."
Gale says labs-on-a-chip are not yet available commercially, although some are getting close. Eddings says possible uses include detection of biowarfare agents, monitoring drug levels in patients, detecting gene mutations, monitoring insulin levels in people with diabetes and many diagnostic tests.
Because liquid can flow slowly through the tiny pump, it also could be used in a drug-delivery device, such as a skin patch with tiny needles, Eddings says.
Gale expects it will take three or four years before the new micropump shows up on commercial lab-on-a-chip devices and in drug-delivery devices.
“The new micropump – known technically as a "PDMS-based gas permeation pump" – was developed for about $20,000 at the university's Center for Biomedical Fluidics, part of Utah's Centers of Excellence program, Gale says.
The National Science Foundation also helped fund the research.