Mapping the Microbiome of … Everything

News   Nov 03, 2017 | Original Story by Heather Buschman and Deb Jude for the University of California - San Diego.

 
Mapping the Microbiome of … Everything

Earth Microbiome Project collaborators collect and analyze samples from diverse environments around the world. Top left: Hiking through the rain forest of Puerto Rico to sample soils with students (credit: Krista McGuire, University of Oregon). Top middle: Colobine monkeys in China, whose fecal microbiomes were sampled for this study (credit: Kefeng Niu). Top right: Bat in Belize, whose fecal microbiome was sampled for this study (credit: Angelique Corthals and Liliana Davalos). Bottom Left: Researcher sampling a stream in the Brooks Mountain Range, Alaska (credit: Byron Crump). Bottom middle: Swabbing bird eggshells from Spain (credit: Juan Peralta-Sanchez). Bottom right: Researcher sampling the southernmost geothermal soils on the planet, at summit of Mt. Erebus, Ross Island, Antarctica (credit: S. Craig Cary, Univ. of Waikato, New Zealand).

 
 
 

RELATED ARTICLES

Algorithm Speeds Up Medical Image Analysis 1000 Times

News

Medical image registration is a common technique that involves overlaying two images, such as magnetic resonance imaging (MRI) scans, to compare and analyze anatomical differences in great detail. Researchers have described a machine-learning algorithm that can register brain scans and other 3-D images more than 1,000 times more quickly using novel learning techniques.

READ MORE

Mechanism Controlling Multiple Sclerosis Risk Identified

News

Researchers at Karolinska Institutet have now discovered a new mechanism of a major risk gene for multiple sclerosis (MS) that triggers disease through so-called epigenetic regulation. They also found a protective genetic variant that reduces the risk for MS through the same mechanism.

READ MORE

Antarctic Worm and Machine Learning Help Identify Cerebral Palsy Earlier

News

A research team has released a study in the peer-reviewed journal BMC Bioinformatics showing that DNA methylation patterns in circulating blood cells can be used to help identify spastic cerebral palsy (CP) patients. The technique which makes use of machine learning, data science and even analysis of Antarctic worms, raises hopes for earlier targeted CP therapies.

READ MORE

 

Comments | 0 ADD COMMENT

Like what you just read? You can find similar content on the communities below.

Applied Sciences Genomics Research Informatics Immunology & Microbiology

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE
 

We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience, read our Cookie Policy