We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Micro-grippers Steered Through Pacman-like Virtual Maze

Micro-grippers Steered Through Pacman-like Virtual Maze

Micro-grippers Steered Through Pacman-like Virtual Maze

Micro-grippers Steered Through Pacman-like Virtual Maze

Figure 1 of article depicting the PacMan™-like maze. Credit: Ongaro et al (2017)
Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Micro-grippers Steered Through Pacman-like Virtual Maze"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Micro-grippers may be able to navigate unstructured environments and could help reduce risk during surgeries, according to a study published December 13, 2017 in the open-access journal PLOS ONE by Federico Ongaro from the University of Twente, The Netherlands and colleagues.

Microrobotic technologies such as micro-grippers could potentially help grasp and manipulate objects in unstructured microscopic environments. For example, wireless micro-grippers that are powered by the heat of their surroundings might navigate blood vessels more precisely than current medical devices, which must be tethered to a power source, and this could potentially reduce risk during some surgeries.

The researchers created four different types of heat-powered micro-grippers, of differing shapes and sizes but all less than a millimeter long. They tested how each navigated a virtual PacMan™-like environment filled with obstacles. Their model showed that the micro-grippers could navigate the virtual maze at up to 3.4 body-lengths per second and that the length, volume and shape of the gripper were important characteristics for navigating the maze successfully. Their analysis suggested that three of the designs might theoretically be capable of moving against the blood-flow in capillaries, which averages 0.3 mm/s.

While these results are specific to the chosen designs, they provide quantitative data for future designers to construct micro-grippers to suit their needs. The researchers next hope to explore how their grippers navigate blood flow in a three-dimensional environment. "This work demonstrates autonomous planning and control of magnetic micro-grippers in PacMan™-like mazes," states Ongaro. "The applications for this work are in minimally invasive surgery and micro-manipulation."

This article has been republished from materials provided by PLOS ONE. Note: material may have been edited for length and content. For further information, please contact the cited source.


Ongaro, F., Scheggi, S., Ghosh, A., Denasi, A., Gracias, D. H., & Misra, S. (2017). Design, characterization and control of thermally-responsive and magnetically-actuated micro-grippers at the air-water interface. Plos One, 12(12). doi:10.1371/journal.pone.0187441