We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
New Sensor Provides Quick Test To Measure Antibiotic Resistance
News

New Sensor Provides Quick Test To Measure Antibiotic Resistance

New Sensor Provides Quick Test To Measure Antibiotic Resistance
News

New Sensor Provides Quick Test To Measure Antibiotic Resistance

Credit: Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "New Sensor Provides Quick Test To Measure Antibiotic Resistance"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

UBC researchers have developed a method for monitoring bacterial responses to antibiotics in health-care settings that opens the door to personalized antibiotic therapy for patients.

Using microwave sensing technology, UBC Okanagan Assistant Professor Mohammad Zarifi and his team at the Okanagan Microelectronics and Gigahertz Applications (OMEGA) Lab have developed a low-cost, contactless, portable and reusable microwave sensor that acts as a fast and reliable evaluation tool for measuring antibiotic resistance.



According to the World Health Organization, over-prescription of antibiotics has led to growing resistance of bacteria towards drug treatments. As a result, the newly evolved “superbugs” have put a large strain on health-care systems globally, says Zarifi.

This newly developed sensor aims to combat the drawbacks of the current Antibiotic Susceptibility Test (AST), as it reduces the time and cost taken to conduct the test, while increasing the portability for AST to be used in remote regions.

“Many types of bacteria are continuously evolving to develop resistance to antibiotics. This is a pressing issue for hospitals around the globe, while sensor and diagnosis technology has been slow to adapt,” explains Zarifi, who teaches at the School of Engineering.

Existing AST practices are expensive and can take up to 48 hours to process results.

“Longer wait times can significantly delay the treatments patients receive, which can lead to further medical complications or even fatalities. This method showcases the requirement for a reliable, rapid and cost-effective detection tool,’’ he says.

The new sensor, developed by the UBC team, can differentiate bacterial growth variations before any visible cues are evident. Therefore, the dosage or type of antibiotics can be fine-tuned to combat the specific bacterial infection.

In the next phase of development, the OMEGA lab aims to integrate artificial intelligence algorithms with this sensing device to develop smart sensors, which would be a big leap towards personalized antibiotic therapy.

“Our ultimate goal is to reduce inappropriate usage of antibiotics and enhance quality of care for the patients,” says Zarifi. “The more quality tools like this that health-care practitioners have at their disposal, the greater their ability to combat bacteria and viruses.”

This research has been published in Nature Scientific Reports with financial and instrumental support from the Natural Sciences and Engineering Council of Canada, the Canada Foundation for Innovation and CMC Microsystems.

Reference: Jain MC, Nadaraja AV, Narang R, Zarifi MH. Rapid and real-time monitoring of bacterial growth against antibiotics in solid growth medium using a contactless planar microwave resonator sensor. Sci Rep. 2021;11(1):14775. doi: 10.1038/s41598-021-94139-y

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement