We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
New Tool Allows Scientists to Visualize ‘Nanoscale’ Processes
News

New Tool Allows Scientists to Visualize ‘Nanoscale’ Processes

New Tool Allows Scientists to Visualize ‘Nanoscale’ Processes
News

New Tool Allows Scientists to Visualize ‘Nanoscale’ Processes

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "New Tool Allows Scientists to Visualize ‘Nanoscale’ Processes"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

SCIENION AG, a leading provider of ultra-low volume precision liquid handling systems, and University of California San Diego, announced that chemists at UC San Diego and automation experts at SCIENION have developed a new tool that allows scientists for the first time to see, at the scale of five billionths of a meter, “nanoscale” mixing processes occurring in liquids.

“Being able to look at nanoscale chemical gradients and reactions as they take place is just such a fundamental tool in biology, chemistry and all of material science,” said Nathan Gianneschi, a professor of chemistry and biochemistry who headed the team that detailed the development in a paper in this week’s issue of the journal Microscopy and Microanalysis.“With this new tool, we’ll be able to look at the kinetics and dynamics of chemical interactions that we’ve never been able to see before.”

Scientists have long relied on Transmission Electron Microscopy, or TEM, to see structures at the nanoscale. But that technique can take only static images and the subjects must be dried, or frozen and mounted within a vacuum chamber in order to be seen. As a result, researchers have been unable to view living processes or chemical reactions at the nanoscale, such as the growth and contraction within living cells of tiny fibers or nanoscale protrusions, essential in cell movement and division, or the changes caused by a chemical reaction in a liquid.

“As chemists, we could only really analyze the end products or bulk solution changes, or image at low resolution because we could never see events directly occur at the nanoscale,” said Gianneschi.

Recent developments in Liquid Cell TEM, or LCTEM, have allowed scientists to finally take videos of nanoscale objects in liquids. But that technique has been limited by the inability to control the mixing of solutions, a requirement when trying to view and analyze the impact of a drug on a living cell or the reaction of two chemicals.

Joseph Patterson, a postdoctoral researcher in the Gianneschi laboratory, working with SCIENION researchers both in the US and in Germany and Pacific Northwest National Laboratory, has taken a big step to resolving that problem by developing a technique as well as a tool that allows scientists to deposit tiny amounts of liquid—about 50 trillionths of a liter—within the viewing area of the LCTEM microscope

“With this technique, we can view multiple components mixed together at the nanoscale within liquids, so, for example, one could look at biological materials and perhaps see how they respond to a drug,” said Gianneschi. “That was never possible before.”

“The benefits to basic research are huge,” he added. “We will now be able to directly see the growth at the nanoscale of all kinds of things, like natural fibers or microtubules. There’s a lot of interest on the part of researchers in understanding how the surfaces of nanoparticles affect chemical reactions or how nanoscale defects on the surfaces of materials develop. We can finally look at the interfaces on nanostructures so that we can optimize the development of new kinds of catalysts, paints and suspensions.”

The study was supported by grants from the U.S. Air Force Office of Scientific Research and the U.S. Army Research Office.

Advertisement