We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Reducing Off-Target Pesticide Impacts

Reducing Off-Target Pesticide Impacts  content piece image
The harmfulness of pesticides to beneficial organisms is one of the most serious concerns in agriculture. Therefore scientists are eagerly looking for new, more environmentally friendly and species-specific solutions. Credit: Estonian University of Life Sciences
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

The detrimental impact of pesticides on non-target organisms is one of the most urgent concerns in current agriculture. Double-stranded RNAs (dsRNAs) represent the most species-specific class of pesticides to date, potentially allowing control of a target pest without affecting other species. The unprecedented target-specificity of dsRNA is due to its nucleotide sequence-specific mode of action that results in post-transcriptional gene silencing, or RNA interference (RNAi), in the target species. The development and field use of dsRNAs, via both the insertion of transgenes into the plant genome and the application of dsRNA sprays, is a rapidly growing area of research. Simultaneously, there exists the growing prospect of harnessing RNAi within integrated pest management schemes.

Using the pollen beetle (Brassicogethes aeneus) and its host crop oilseed rape (Brassica napus) as a model crop-pest system, a team of researchers collectively from Estonian University of Life Sciences, Ghent University and Maastricht University examined how RNAi efficacy depends on duration of dietary exposure to dsRNA. To this end, the authors applied dsRNA (specifically designed to induce RNAi in the pollen beetle) to oilseed rape flowers, and analyzed RNAi-induced mortality between insects chronically fed dsRNA and insects fed dsRNA for 3 days. Most notably, their data suggest that, with chronic dietary exposure to dsRNA, reduced dsRNA concentrations can be applied in order to achieve a similar effect compared to short-term (e.g. 3 days) exposure to higher concentrations. This observation has important implications for optimizing dsRNA spray approaches to managing crop pests. Specifically, while crop pest management is likely to benefit from successive dsRNA spray treatments, this may still be of economic benefit in practice because lower concentrations (e.g. 5-10 times lower) may be suitable for an equally effective outcome.

This work is timely, as dsRNA spray approaches are increasingly under consideration due to not only reduced biotechnology requirements, but also less legal restrictions in certain countries (e.g. member states of the European Union), compared to the engineering and cultivation of RNAi cultivars. The study adds new insights to the current discussion surrounding the potential benefits of genetically engineered crops. Transgenic RNAi cultivars continuously produce the species-specific dsRNA within the plant's tissues, chronically exposing the target species to the pesticide as long as the pest continuously feeds on the crop. Thus, the authors highlight the need for research into the development and potential use of genetically engineered RNAi oilseed rape cultivars, given the enhanced RNAi efficacy resulting from chronic dsRNA feeding in the pollen beetle.

Reference: Willow J, Soonvald L, Sulg S, et al. RNAi efficacy is enhanced by chronic dsRNA feeding in pollen beetle. Commun. Biol. 2021;4(1):1-8. doi: 10.1038/s42003-021-01975-9

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.