We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Small Flight Path Changes Could Slash Emissions

Small Flight Path Changes Could Slash Emissions content piece image
Credit: Pixabay.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Contrails — the white, fluffy streaks in the sky that form behind planes — can harm the environment. Now, scientists report in ACS’ Environmental Science & Technology that small flight path adjustments could reduce the climate impact of these emissions.

Contrails materialize at cruising altitude when aircraft emit black carbon particles from incomplete fuel combustion, providing a surface on which moisture condenses to form ice particles. Most contrails last only a few minutes. But if the atmosphere is supersaturated with ice, these tracks can spread and mix with other contrails and cirrus clouds, forming “contrail cirrus” that last up to 18 hours. Previous studies suggested contrails and the clouds they induce have as much of a warming impact on climate as planes’ CO2 emissions. Marc Stettler and colleagues wanted to refine the models to more accurately predict the characteristics and impact of contrails, and to evaluate mitigation strategies, such as altering flight paths.


The team combined their recently developed model to estimate black carbon emissions for specific aircraft engine types and power with a model to estimate the characteristics and climate impact of contrails from individual flights and detailed weather information. In a study of Japan’s airspace, they showed that 80% of warming caused by contrails could be traced to a mere 2.2% of flights. They then showed that making only 1.7% of aircraft fly 2,000 feet higher or lower than their originally planned flight path could limit formation of contrails, thereby reducing their warming effect by 59.3%. Unfortunately, diversions can also make flight paths less efficient, leading to increased CO2 emissions, and previous studies that considered lateral diversions indicated this could offset any reduction in contrails. But by targeting the few flights that cause the most warming contrails and only making small altitude changes, the team found the reduction in contrail warming outweighed the CO2 penalty. In the long term, if conventional engines were also replaced with cleaner-burning engines, overall contrail impact could be reduced by 91.8%, the researchers say.

Reference
Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption. Roger Teoh, Ulrich Schumann, Arnab Majumdar,Marc E. J. Stettler.  Environ. Sci. Technol. 2020, February 12, 2020, https://doi.org/10.1021/acs.est.9b05608.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.