We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Team of Scientists at Einstein and Ualbany Nanocollege Receive Major Grant to Develop World’s Smallest Cancer Detection Device
News

Team of Scientists at Einstein and Ualbany Nanocollege Receive Major Grant to Develop World’s Smallest Cancer Detection Device

Team of Scientists at Einstein and Ualbany Nanocollege Receive Major Grant to Develop World’s Smallest Cancer Detection Device
News

Team of Scientists at Einstein and Ualbany Nanocollege Receive Major Grant to Develop World’s Smallest Cancer Detection Device

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Team of Scientists at Einstein and Ualbany Nanocollege Receive Major Grant to Develop World’s Smallest Cancer Detection Device"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Researchers at the Albert Einstein College of Medicine of Yeshiva University have received a $2 million grant from the National Cancer Institute to study tumor “microenvironments”, where tumors interact with surrounding tissues, cells and chemicals in ways that all too often encourage cancer cells to invade other areas of the body in the process known as metastasis.

With the new NCI grant, Dr. John Condeelis, co-chair of anatomy and structural biology at Einstein and the principal investigator of the newly funded program and his Einstein colleagues will team up with researchers at the College of Nanoscale Science and Engineering (CNSE) of the University at Albany to develop a next-generation microchip that, when placed in a cancerous mass, can gather information on the presence of metastatic cells that would demand more aggressive cancer therapy.

“The NCI has placed a very high priority on understanding the ‘dialogue’ in tumor microenvironments that appears crucial for causing cancers to spread,” says Dr. Condeelis.

“This five-year Tumor Microenvironment Network grant will allow Einstein to influence the way research is carried out in this emerging and important field.”

Dr. James Castracane, the project’s co-investigator, who is head of the Nanobiosciences Constellation at CNS said, “By integrating cutting-edge science and engineering at the nanoscale level with vital biomedical research, it is our intent to provide deeper understanding of the causes of cancer metastasis and migration – knowledge that is of critical importance in the treatment and, ultimately, prevention of cancer.”

Dr. Condeelis has used the multiphoton confocal microscope to directly observe cellular interactions in the tumor microenvironment of live animal models of breast cancer.

By placing an artificial blood vessel near tumors, he was able to collect motile cancer cells for study and to predict by the presence or absence of certain signaling molecules, whether the tumor cells have the potential to metastasize.

The Einstein and Albany researchers will use nanotechnology, which involves studying and working with material on the molecular level, to design a “microchip” version of the artificial blood vessel that Dr. Condeelis has used successfully in animals.

The microchip will be assembled from nanoscale components so that several different functions can be carried out within a very small package.

The goal was to implant these tiny microchips, just two to three cells in diameter and a tenth of a millimeter in length,  in human tumors, where they would remain for days or weeks.

The chips would report remotely to scanners that would “read” them on the nature of the cells that infiltrate them in particular, on whether metastatic cells are present that would call for more aggressive cancer therapy.

In 2005, Einstein formed an alliance with UAlbany’s CNSE to advance education and research in the rapidly growing fields of nanobiotechnology and nanomedicine.

“This NCI grant marks a true milestone for this partnership, which combines the unique expertise and resources of both institutions to apply nanoscale principles to detect diseases and develop treatments for them,” says Ira M. Millstein, chairman of the Einstein Board of Overseers.

“We are committed to ensuring that the Einstein-Albany alliance will lead the nation in efforts to use nanotechnology to improve peoples’ lives,” Millstein continued.

Einstein is one of nine research centers nationwide to receive a Tumor Microenvironment Network grant.

In a departure from traditional NCI practice, the nine grant recipients are expected to collaborate closely during the five-year research period to improve technologies used in studying the tumor microenvironment.

Advertisement