We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
The McGurk Effect- When What You See Overrides What You Hear
News

The McGurk Effect- When What You See Overrides What You Hear

The McGurk Effect- When What You See Overrides What You Hear
News

The McGurk Effect- When What You See Overrides What You Hear

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "The McGurk Effect- When What You See Overrides What You Hear"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Seeing is not always believing – visual speech (mouth movements) mismatched with auditory speech (sounds) can result in the perception of an entirely different message. This mysterious illusion is known as the McGurk effect. Neuroscience researchers at Baylor College of Medicine have created an algorithm to reveal key insight into why the brain can sometimes muddle up one of the most fundamental aspects of the human experience.

The findings, appearing in the latest edition of PLOS Computational Biology, will be useful in understanding patients with speech perception deficits and in building computers able to understand auditory and visual speech.

“All humans grow up listening to tens of thousands of speech examples, with the result that our brains contain a comprehensive mapping of the likelihood that any given pair of mouth movements and speech sounds go together,” said Dr. Michael Beauchamp, professor of neuroscience at Baylor and co-author on the paper with John Magnotti, postdoctoral research fellow at Baylor. “In everyday situations we are frequently confronted with multiple talkers emitting auditory and visual speech cues, and the brain must decide whether or not to integrate a particular combination of voice and face.”

“Even though our senses are constantly bombarded with information, our brain effortlessly selects the verbal and nonverbal speech of our conversation partners from this cacophony,” Magnotti said.

The McGurk effect is an example of when this goes wrong. It happens when mouth movements that are seen can override what is heard, causing a person to perceive a different sound than what is actually being said. Only when the eyes are closed, and when the sound is being heard, can the correct message be perceived. For example, the visual “ga” combined with the auditory “ba” results in the perception of “da.”

Magnotti and Beauchamp were able to create an algorithm model of multisensory speech perception based on the principle of causal inference, which means given a particular pair of auditory and visual syllables, the brain calculates the likelihood they are from single versus multiple talkers and uses this likelihood to determine the final speech perception.

“We compared our model with an alternative model that is identical, except that it always integrates the available cues, meaning there is no casual inference of speech perception,” said Beauchamp, who also is director of the Core for Advanced MRI at Baylor. “Using data from a large number of subjects, the model with causal inference better predicted how humans would or would not integrate audiovisual speech syllables.”

“The results suggest a fundamental role for a causal inference type calculation going on in the brain during multisensory speech perception,” Magnotti said.

Researchers already have an idea of how and where the brain separately encodes auditory speech and visual speech, but this algorithm shines light on the process of how they are integrated. It will serve as a guide, highlighting specific brain regions that will be essential for multisensory speech perception.

"Understanding how the brain combines information from multiple senses will provide insight into ways to improve declines in speech perception due to typical aging and even to develop devices that could enhance hearing across the life span,” Beauchamp said.

This article has been republished from materials provided by Baylor College of Medicine. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement