We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Understanding the Spread of the Ash Dieback.

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

As part of the NORNEX consortium , TGAC has sequenced 20 genomes of the fungus (Hymenoscyphus fraxineus) responsible for the spread of the ash dieback epidemic that threatens our third most common broadleaf tree (after oak and birch). The data is available for analysis on the crowdsourcing site OpenAshDieBack .

These 20 samples come from across the UK (supplied by The Food and Environment Research Agency (Fera)); our analysis of the differences between them will help us to understand the characteristics associated with the spread of this devastating disease across Europe and the UK. TGAC's data from these samples will be combined with genomes sequenced from across Europe at The University of Edinburgh, along with further genomes from Japan sequenced at TGAC in collaboration with The Sainsbury Laboratory.

TGAC first sequenced the genome of this ash dieback fungus in 2012 using a sample from Norfolk isolated by scientists at the John Innes Centre. The epidemic has spread across Europe after first being identified in Poland, in 1992. Infection by the fungus has now been detected across many sites in the UK. The isolation and analysis of the fungi has been driven by a funding initiative from the Biotechnology and Biological Sciences Research Council (BBSRC) in partnership with the Department for Environment, Food and Rural Affairs (Defra) to help tackle this major tree disease.

Matt Clark,  Plant and Microbial Genomics  Group Leader, said: "To understand how the Ash Dieback disease will affect the UK, and how we can combat it, we have to understand the pathogen varieties present in the UK. These samples give us important insights into how the fungus could infect different varieties of Ash trees, and respond to treatments such as fungicides."

Mark McMullan, Population Genomicist in the Plant and Microbial Genomics team at TGAC, said: "Sequencing the genome of the pathogen for the first time back in 2012 was an important first step in the process of understanding its evolution in the context of other species of fungi. However, important new information such as the identification of genes associated with the spread of infection can be obtained by understanding the genetic variation between different isolates."