Knockdown of Long Noncoding RNAs in Breast Cancer

Poster   Mar 31, 2015

 
Knockdown of Long Noncoding RNAs in Breast Cancer
 
View Poster

1 Jennii Luu, 2 Jesper Maag, 1 Yanny Handoko, 3 Richard Redvers, 3,4 Robin L. Anderson, 5 Maren M. Gross , 2 Marcel E. Dinger, and 1,3 Kaylene J. Simpson 1 Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre; 2 Genome Informatics, The Kinghorn Cancer Centre, The Garvan Institute of Medical Research; 3 Metastasis Research Laboratory, Peter MacCallum Cancer Centre, 4 Sir Peter MacCallum Department of Oncology, University of Melbourne;

 
 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

 
View Poster
 
 
 

OTHER POSTERS

Psychiatric Risk Gene Cacna1c and Early Life Stress: Potential Gene-Environment interactions?

Poster

Early life stress (ELS) is highly associated with development of psychopathology
and mood disorders in adulthood. Genetic studies have identified variation in the gene calcium voltage-gated channel subunit alpha1C (CACNA1C) to increase risk for several psychiatric disorders. This poster assessed the expression of Cacna1c following prepubertal stress.

READ MORE

T-helper cell phenotype expression in cutaneous lesions of angioimmunoblastic T-cell lymphoma

Poster

Angioimmunoblastic T-cell lymphoma (AITL) is a common type of peripheral T-cell lymphoma. AITL can be missed until lymphadenopathy develops in patients initially presenting with skin lesions, as skin biopsy may lack conclusive findings. Our case highlights the extranodal presentation of AITL with cutaneous lesions displaying the TFH phenotype.

READ MORE

Novel Role of the Innate Immune DNA Sensor IFI16 (Interferon Gamma Inducible Protein 16) as a Major Epigenetic Modulator During KSHV Infection and Lytic Reactivation

Poster

Studies have shown that IFI16 acts as an antiviral restriction factor against a number of DNA viruses, by inhibiting viral replication or transcription through epigenetic modifications. However, till date, no specific epigenetic function of IFI16 has been identified. Here, we have discovered that IFI16 recruits two histone methyltransferases on the KSHV episome leading to altered Histone H3K9 methylation, thus regulating its lifecycle.

READ MORE

 

Comments | 0 ADD COMMENT

Like what you just read? You can find similar content on the communities below.

Cancer Research Drug Discovery Genomics Research Informatics

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE
 

We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience, read our Cookie Policy