We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience, read our Cookie Policy

A Microfluidic Chip based Model for the Study of Full Thickness Human Intestinal Tissue

Video   Oct 18, 2016

 

The dual-flow device is designed to mimic the human body and maintain tissue in a functional state ex-vivo. This can be used for the investigation into diseases such as inflammatory bowel disease (IBD) including Crohns disease and Ulcerative Colitis. As the causes of IBD remain unknown many patients with extensive disease may develop complications that are potentially life-threatening, including an increased risk of colorectal cancer. The device has been characterised to ensure the tissue remains viable for up to 72 hours. Tissue has been investigated through measuring cell death via LDH release, cell proliferation via Ki-67 staining and MTS, and also through histology by H&E and PAS staining. IBD is thought to be caused by an influx of luminal content into the mucus layer of the gut stimulating an inflammatory response. Investigations using biopsies with an intact layer of mucus have shown that inflammatory markers (e.g. IL-10, IL-12 and calprotectin) are detectable in the effluent. The device provides a platform that allows the complex interaction between the host, mucus production and the commensal bacteria to be studied; providing a same species model for investigation of IBD. It is simple to use and is easily adopted by other research laboratories.

 
 
 
 

Recommended Videos

Plug-and-play Paperfluidic Diagnostics

Video

Researchers at MIT have developed half-inch modular blocks that can be constructed to produced different diagnostic devices. They hope that their low-cost, easy-to-assemble half-inch creations will soon land in the hands of many small laboratories around the world, to improve infection detection and monitoring.

WATCH NOW

John Ioannidis on Moving Toward Truth in Scientific Research

Video

PLOS author John Ioannidis, Professor of Medicine, of Health Research and Policy, and of Statistics at Stanford University, considers how the scientific community can move toward greater truth in published research.

WATCH NOW

Science-Based Decision-Making

Video

Science is great, not only because it generates knowledge and helps us create technologies that make our lives easier, but also because it brings people together. If we embrace science-based decision-making, we can make a huge impact on our society!

WATCH NOW

 

Like what you just watched? You can find similar content on the communities below.

Drug Discovery

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE