We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience, read our Cookie Policy

Hierarchically Structured Biomaterials for Bone-on-a-Chip Devices and Bone Tissue Engineering

Video   Oct 18, 2016

 

Natural tissues and organs are typically structured in a hierarchical fashion, in which the Extra-Cellular Matrix (ECM) provides a microporosity to optimally support cell growth while larger scale structures (e.g. vasculature and boundary layers) are incorporated to support the function and structure of the tissue and organ. To mimic this multiscale structuring in synthetic biomaterials we combine additive manufacturing with self-assembly. In this structuring technique the internal porosity is governed by self-assembly and the macroscopic structure is constructed by additive manufacturing. Emulsion templating is used as self-assembly technique to produce materials with a high microscale porosity. These emulsions can subsequently be used as photocurable resins for stereolithography, producing user-defined macroscale structures with a tissue-like microporosity. The mechanical properties of these materials can be varied via the changing the monomer ratio within the resin. We produce these hierarchical structured material in 3D structured materials such as woodpile-style scaffolds, microspheres with controllable diameter and as 3D microenvironments that can be integrated in standard poly-dimethylsiloxane (PDMS) based microfluidics. These scaffolds we currently investigate as a platform for bone-on-a-chip based devices and bone tissue engineering.

 
 
 
 

Recommended Videos

Researchers love this microplate spectrophotometer - Thermo Scientific Multiskan Sky

Video

Plate reader with ready-made protocols, cloud connected, touch screen, no learning curve. Researchers from the University of Helsinki Pharmacy dept. review the Thermo Scientific Multiskan Sky Microplate Spectrophotometer as efficient and easy-to-use.

WATCH NOW

Improving hepatocyte activity, pooling and lab efficiency

Video

CryostaX® hepatocytes are created using a patented process that produces unique single-donor cell pellets. This format allows for distinct benefits to hepatocyte performance, efficiency in the lab, and test system design, precipitating the potential discontinuation of cryopreserved hepatocytes prepared from traditional methods. This webinar will discuss the technology, its optimal utilization and benefits

WATCH NOW

Signals Notebook: Finally More Time For Science

Video

PerkinElmer Signals Notebook allows you to achieve meaningful scientific breakthroughs – faster and smarter.

WATCH NOW

 

Like what you just watched? You can find similar content on the communities below.

Drug Discovery

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE