We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Rectangle Image
Video

Tumour Regression after Intravenous Administration of Novel Tumour-targeted Nanomedicines

Rectangle Image
Video

Tumour Regression after Intravenous Administration of Novel Tumour-targeted Nanomedicines

About the Speaker

Christine Duf├Ęs is a Senior Lecturer at the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow (United Kingdom). She obtained a Doctorate in Pharmacy (with Distinction and congratulations of the Jury) and a PhD (with a European Label, Distinction and congratulations of the Jury) from the University of Poitiers (France). After four years as a post-doctoral researcher at the Cancer Research UK Beatson Laboratories in Glasgow, she was appointed as a Lecturer at the Strathclyde Institute of Pharmacy and Biomedical Sciences in 2006 and became a Senior Lecturer in 2012. Abstract

The possibility of using genes as medicines to treat cancer is limited by the lack of safe and efficacious delivery systems able to deliver therapeutic genes selectively to tumours by intravenous administration, without secondary effects to healthy tissues. In order to remediate to this problem, we investigated if the conjugation of the polypropylenimine dendrimer to transferrin, whose receptors are overexpressed on numerous cancers, could result in a selective gene delivery to tumours after intravenous administration, leading to an increased therapeutic efficacy. The objectives of this study are to evaluate the targeting and therapeutic efficacies of a novel transferrin-bearing polypropylenimine dendrimer. The intravenous administration of transferrin-bearing polypropylenimine polyplex resulted in gene expression mainly in the tumours. Consequently, the intravenous administration of the delivery system complexed to a therapeutic DNA encoding TNF led to a rapid and sustained tumour regression over one month (90% complete response, 10% partial response on A431 human epidermoid tumours). It also resulted in tumour suppression for 60% of PC-3 and 50% of DU145 prostate tumours. The treatment was well tolerated by the animals, with no apparent signs of toxicity. Transferrin-bearing polypropylenimine is therefore a highly promising delivery system for cancer therapy.

Advertisement